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1 INTRODUCTION

The subject of this report is traveling waves on two-dimensional (2D) and three-dimensional
(3D) periodic arrays of lossless scatterers. Our investigation of these arrays is motivated
in part by the recent theoretical demonstration by Holloway et al. that a doubly negative
(DNG) material (a material with negative permittivity and permeability) can be formed by
embedding an array of spherical particles in a background matrix [1]. The work of Holloway
et al. is based on mixing formulas, obtained by Lewin [2], related to the Clausius-Mossotti
mixing formulas. In contrast, our work, which corroborates the findings of Holloway et al.,
is based on an analysis of the k–β equations for traveling waves on periodic arrays and
has the advantages of not only yielding the k–β diagrams for all the arrays studied, but
also yielding expressions for the effective (bulk) permittivity and permeability of 3D arrays
that are more accurate than the Clausius-Mossotti type formulas over a larger range of
separation of the array elements. The work described here builds on and extends our earlier
investigations of traveling waves on linear [one-dimensional (1D)] periodic arrays of acoustic
monopoles [3], electric dipoles [4], and magnetodielectric spheres [5]-[7], using a spherical-
wave source scattering-matrix formulation. Although conceptually our treatment of traveling
waves on 2D and 3D arrays is identical with our treatment of traveling waves on linear arrays,
mathematically it is considerably more complicated because of the necessity of converting
to rapidly convergent forms the double or triple summations that play a central role in the
analysis.

The class of problems we consider can be described as follows. We have a periodic array of
identical elements each characterized by a scattering coefficient that relates the field scattered
from the element to the field incident on the element. As in our previous related work, it
is assumed that only the fields of the lowest order spherical multipoles (acoustic monopoles,
electromagnetic dipoles) are significant in analyzing scattering from the array elements. In
the case of a 2D array, the array can be thought of as a linear array whose “elements” are
equispaced columns of elements normal to the array axis, and in the case of a 3D array it
can be helpful to regard the array as a linear array whose “elements” are equispaced planes
of elements normal to the array axis. The spacing of elements in the direction parallel to
the array axis is denoted by d and in the direction or directions normal to the array axis by
h. Our interest is in lossless traveling waves (with real propagation constants β) that can be
supported by the array in the direction parallel to the array axis.1 The focus of our attention
is the so-called k–β equation (or diagram) — in our work more properly referred to as the
kd–βd equation (or diagram) — that relates the traveling wave electrical (or acoustical)
separation distance βd of the array elements in the direction parallel to the array axis, to the
corresponding free-space electrical (or acoustical) separation distance kd, where k = ω/c is
the free-space wavenumber with ω > 0 the angular frequency and c the free-space speed of
light. In this report we do not treat traveling waves in directions other than parallel to the
array axis. Although this report centers on traveling waves supported by infinite periodic
arrays, for closely-spaced 3D arrays of electric dipoles perpendicular to the array axis and
for closely spaced 3D arrays of magnetodielectric spheres, the solution of the kd–βd equation

1Alù and Engheta [8] have recently used analytic continuation arguments to determine the complex
propagation constants for attenuated traveling waves (leaky and absorptive) on 1D infinite arrays of scattering
elements.
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can be used to obtain an effective permittivity and permeability of the array (see the end of
Section 5 and the second subsection of Section 9), which in turn can be used as the basis for an
approximate treatment of the exciting of traveling waves in partially finite 3D arrays (arrays
that are finite in the direction of the array axis and infinite in the directions transverse to
the array axis). Additionally, the analyses we have performed to obtain the kd–βd equations
for infinite periodic 3D arrays of acoustic monopoles, electric dipoles perpendicular to the
array axis, and magnetodielectric spheres with the electric and magnetic dipoles oriented
perpendicular to the array axis, can be used to obtain exact computable expressions for the
fields of partially finite periodic arrays of these elements when the arrays are illuminated by
a plane wave propagating in a direction parallel to the array axis (see Section 11); that is,
with the propagation vector of the plane wave normal to the interface between the array and
free space.

Some basic properties of the kd–βd diagram may be noted here. In [9, ch. 7] it is
shown that the dependence of the kd–βd diagram on βd is periodic in βd with a period of
2π. In Appendix A it is proven that if a periodic array of reciprocal elements supports a
traveling wave with propagation constant β it also supports a corresponding traveling wave
with propagation constant −β. Therefore, for periodic arrays of reciprocal elements, as are
all the arrays considered in this report, kd is an even function of βd. It follows that for βd
in the interval π < βd < 2π

kd(βd) = kd(2π − βd), π < βd < 2π (1.1)

where we have written kd as a function of βd. Hence we need only consider βd in the interval

0 < βd ≤ π . (1.2)

In [3] it was shown that for a general infinite linear periodic array of lossless passive electri-
cally small scatterers

kd ≤ βd (1.3)

which coupled with (1.2) gives
kd ≤ βd ≤ π . (1.4)

Thus the wavelengths of the lossless traveling waves are equal to or less than the free-space
wavelength, and the traveling waves are slow waves compared with the free space wave. The
proof of (1.4) for linear (1D) arrays given in [3] is easily seen to be valid for traveling waves on
2D arrays as well.2 However, (1.3) is not valid in general for traveling waves on 3D arrays of
lossless scatterers, nor is it necessarily true that kd ≤ π. Nevertheless, for 3D arrays we can,
without loss of generality, still limit our consideration of traveling waves to those for which
0 < βd ≤ π. However, for traveling waves on 3D periodic arrays, kd can be greater than π
and both fast and slow waves can be supported. It is worth noting that in the analysis of 2D

2The essence of the proof is as follows. A linear or 2D periodic array with separation d between adjacent
elements (for a 2D array the elements are periodic line sources) supporting a lossless traveling wave in the
direction of the array axis with real propagation constant β can be regarded as a phased array with a phase
shift of βd between adjacent elements. If it is assumed that βd < kd the array will radiate power into space
in the direction θ = cos−1(βd/kd) measured from the array axis. From considerations of conservation of
power this result is inconsistent with the assumption that the traveling wave is lossless.
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arrays we give in this report, if it is assumed that βd < kd then we are led to the conclusion
that the scattering coefficients of the array elements cannot satisfy certain basic relations
that have been shown from fundamental principles of reciprocity and power conservation in
[3] and [4] to be necessarily obeyed by the scattering coefficients of small lossless scatterers.
This contradiction thus serves as an alternate proof of (1.3) for the particular 2D arrays we
consider.

Although there is no upper limit on the transverse inter-element spacing h for either 2D
or 3D periodic arrays, the expressions we give for the rapidly convergent summations in the
kd–βd equations are valid only for kh < 2π, that is, for h less than a wavelength. This
restriction on the size of h is not an essential limitation of either the transverse element
separation or of the analyses we perform. It is, rather, a matter of our not wanting to
unnecessarily complicate the form of the rapidly convergent expressions we give by making
them independent of the range of kh since in most practical applications the transverse
element spacing can be expected to be less than a wavelength. As examples of how the
range of kh can be extended, in Sections 2 and 3 dealing with 2D and 3D arrays of acoustic
monopoles we derive rapidly convergent expressions for the range 2π < kh < 4π. These
examples can serve as models for a reader interested in extending the range of kh for the kd–
βd equations of other arrays. Also of interest are the limiting values of the kd–βd equations
as kh → 2π since some of the individual terms of the rapidly convergent expressions in
the kd–βd equations are singular at kh = 2π. Closer analysis shows, however, that the
singularities of the various terms in the kd–βd equation cancel one another and hence the
kd–βd equations remain non-singular at kh = 2π.

For all the arrays considered in this report, an initial form of the kd–βd equation is
obtained very simply by assuming a traveling wave excitation of the array and summing the
acoustic, electric, or electromagnetic fields incident on a reference element from all the other
elements of the array. (The field incident on a reference element from all the other elements of
the array is called the “interaction field” in the literature [10, ch. 12]). This form of the kd–
βd equation consists of summations of an infinite number of terms of the form exp(ikr)/(kr),
exp(ikr)/(kr)2, or exp(ikr)/(kr)3. With only one exception, none of these summations can
be expressed in closed form. Furthermore, the summations converge so slowly as to make
the initial forms of the kd–βd equations useless for calculation purposes. Accordingly, it is
necessary to obtain rapidly convergent expressions for all the slowly convergent summations
that are encountered.3 To obtain rapidly convergent expressions we make use of the Poisson
summation formula or two different methods based on the use of Floquet mode expansions,
leading to a second form of the kd–βd equation that invariably includes series of the form∑

j ajZn(jx) known as Schlömilch series [11, chap. XIX], [12, secs. 7.10.3, 7.15], where aj
can be a trigonometric function and Zn is a Bessel function of order n. While the Schlömilch

3Some of the summations over the array elements in columns and planes transverse to the array axis
encountered in the report are not absolutely convergent. For certain values of the parameter kh they may not
even be conditionally convergent. However, these summations can always be made absolutely convergent by
the stratagem of adding a small positive imaginary part to the free-space propagation constant k. Physically,
this is equivalent to assuming that the contributions of array elements at great distances from the reference
element attenuate to zero. The analyses can then be performed rigorously and the small imaginary part
allowed to go to zero at the end. In this report we will not enact this stratagem explicitly in our analyses
but will proceed formally as if all the summations we treat are absolutely convergent.
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series involving modified Bessel functionsKn converge very rapidly because of the exponential
decay of these functions, the Schlömilch series involving Hankel functions (or equivalently
ordinary Bessel functions, Jn, and Neumann functions, Yn) converge very slowly. Thus the
second form of the kd–βd equation would leave us not all that much better off than we
were with the initial form were it not for the fact that rapidly convergent expressions are
available for all the Schlömilch series involving Hankel functions that we encounter. For
ease of reference we have collected in Appendix B the rapidly convergent expressions of
Schlömilch series that we use in the report. Additionally, in Appendix C we have assembled
a number of Bessel function relations that we use frequently, and in Appendix D we have
collected several miscellaneous summation formulas that we employ often.

The outline of the report is as follows. There are two main parts of the report. The
first part, Sections 2 through 11, is devoted to the analysis, and the second part, Section
12, to the numerical results. At the expense of some duplication of material we have tried
to make the analysis sections of the report more or less self-contained so that the reader
can skip to whatever sections are of particular interest. In Sections 2 and 3 we derive the
kd–βd equations for 2D and 3D arrays of acoustic monopoles, respectively, and present two
methods, the Poisson summation method and the Floquet mode method, used for converting
slowly convergent summations to rapidly convergent forms. The results of these sections also
serve as the basis for an alternate form of the Floquet mode method, using the Hertz vector
potential to obtain the coefficients in the Floquet mode expansion, that plays an important
role in the analysis sections of the report dealing with electric dipole and magnetodielectric
sphere array elements.

In Sections 4 and 5 we derive the kd–βd equations for 2D and 3D periodic arrays of electric
dipoles (short perfectly electrically conducting wires) oriented perpendicular to the array
axis, while in Sections 6 and 7 we derive the kd–βd equations for 2D and 3D periodic arrays
of electric dipoles oriented parallel to the array axis. Sections 8 and 9 are devoted to the
analysis of traveling waves on 2D and 3D periodic arrays, respectively, of magnetodielectric
spheres. Two distinct polarizations of the elements are treated in Sections 4 and 8, one
polarization in which the electric dipoles are in the plane of the 2D array, and the other in
which they are perpendicular to the array plane.

If the magnetodielectric sphere elements of a 3D array are sufficiently close together, the
array can be regarded as a medium with an effective permittivity and permeability that
determine the propagation characteristics of a traveling wave supported by the array. In
the second subsection of Section 9 we show how the solution to the kd–βd equation for a
traveling wave can be used to obtain the effective permittivity and permeability. We also
describe a second method, based on the Clausius-Mossotti relation and independent of the
kd–βd equation, for obtaining the effective permittivity and permeability.

In Section 10 we consider 2D and 3D magnetodielectric sphere arrays with electric or
magnetic dipoles oriented parallel to the array axis, and show that the treatment of these
arrays is identical to that of the 2D and 3D arrays of electric dipoles oriented parallel to the
array axis considered in Sections 6 and 7.

In Section 11 we show that the analyses we have performed to obtain the kd–βd equations
for infinite periodic 3D arrays of acoustic monopoles, electric dipoles perpendicular to the
array axis, and magnetodielectric spheres with the electric and magnetic dipoles oriented
perpendicular to the array axis, can be used to obtain expressions for the fields of partially
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finite periodic arrays of these elements (arrays that are finite in the direction of the array
axis and are of infinite extent in the directions transverse to the array axis), when the arrays
are illuminated by a plane wave propagating in a direction parallel to the array axis; that
is, with the propagation vector of the plane wave normal to the interface between the array
and free space.

The Numerical Results Section 12 is devoted to presenting and discussing numerically
computed kd–βd diagrams for 2D and 3D acoustic monopole arrays, 2D and 3D periodic
arrays of short electric dipoles, and 2D and 3D periodic arrays of magnetodielectric spheres.
For the sake of comparison, we also compute the corresponding kd–βd diagrams for 1D
periodic arrays of some scatterers from their transcendental equations given in previous re-
ports [4], [5]. Once the kd–βd diagram is found for a 3D infinite periodic array, we use the
formulas derived in Section 9.2 (referred to herein as the Shore-Yaghjian formulas) for deter-
mining the effective (bulk) permittivity and permeability of the array from the parameters
in the transcendental equation. In addition, these bulk parameters are also determined from
the Clausius-Mossotti relations, which, in general, are not as accurate as those determined
from the Shore-Yaghjian formulas. In Subsection 12.1 we show plots of the family of kd–βd
curves determined by different values of the phase ψ of the scattering coefficient for 2D and
3D arrays of acoustic monopoles and electric (magnetic) dipoles. (The 1D, 2D, and 3D
family of kd–βd curves for magnetic dipoles are identical to those for electric dipoles.) In
Subsections 12.2–12.5, kd–βd diagrams and effective permittivity and permeability curves
(for 3D arrays) are given for representative scatterers, namely, for short perfectly electrically
conducting (PEC) wires, for PEC spheres, for diamond spheres, for silver nanospheres, and
for magnetodielectric spheres.

In Appendix A it is proved that a reciprocal (lossy or lossless) waveguide (uniform or
periodic) that supports a traveling wave with propagation constant β also supports a corre-
sponding traveling wave with propagation constant −β; that is, all reciprocal waveguides are
bidirectional. In Appendix B we give rapidly convergent expressions for all the Schlömilch
series encountered in the analysis part of the report. In Appendix C we list Bessel function
relations that we use frequently, and in Appendix D we list important summation formulas.
For ease of reference, in Appendix E we list all the rapidly convergent forms of the kd–βd
equations derived in Sections 2 to 9.

Although, apart from Section 10, we do not explicitly consider periodic arrays of mag-
netic dipoles, it should be noted that the kd–βd equations for 2D and 3D arrays of magnetic
dipoles are identical with the kd–βd equations obtained for 2D and 3D arrays of electric
dipoles. Thus, for example, the kd–βd equation for a 2D or 3D array of magnetodielectric
spheres in a frequency range where the magnetic dipole scattering coefficient is much larger
than the electric dipole coefficient, can be obtained very accurately by solving the transcen-
dental equation for the corresponding array of electric dipoles oriented in the direction of
the magnetodielectric sphere magnetic dipoles, but with the phase of the normalized (see
Footnote 6 on page 90) Mie magnetic dipole scattering coefficient replacing the phase of the
electric dipole scattering coefficient in the transcendental equation.

Although in Sections 8, 9, and 10 we refer to the array elements as “magnetodielectric
spheres”, in fact the analyses performed are equally applicable to any array elements that
can be modeled by a pair of crossed electric and magnetic dipoles perpendicular to the array
axis. The electric and magnetic dipoles of the individual array elements are assumed to be
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uncoupled (as indeed they are for spheres whose permittivity and permeability are radially
symmetric) so that an incident electric field at the element center in the direction of the
electric dipole excites only the electric dipole field, and an incident magnetic field at the
element center in the direction of the magnetic dipole excites only the magnetic dipole field.
The electric and magnetic dipoles of different array elements are coupled, however, because
the field scattered from an electric dipole has a component of the magnetic field parallel to
the magnetic dipoles of the array elements, and the field scattered from a magnetic dipole
has a component of the electric field parallel to the electric dipoles of the array elements.4

Since Tretyakov and his co-workers have also devoted considerable effort to studying
traveling waves on periodic structures [13]-[16], it is important to point out similarities and
differences between their work and ours. Similarly to us, Tretyakov et al. focus on the kd–βd
equation (which they call the eigenvalue equation) supported by periodic arrays of scatter-
ers, and like us they assume that scattering from the array elements is adequately described
by considering the elements to be dipoles. The first step for both of us in obtaining the
kd–βd equation is to assume a traveling wave excitation of the array. Whereas we obtain our
initial form of the kd–βd equation from the expression for the field incident on a reference
array element from all the other elements of the array (the interaction field), Tretyakov et
al. obtain their eigenvalue equation from the expression for the dipole moment induced in
the reference dipole by the interaction field. Another significant difference between their
work and ours is how the interaction field is evaluated. To obtain the interaction field from
a plane (normal to the array axis) of array elements, Tretyakov et al. use an approximation
technique in which they divide the plane into a small circular region (“hole”) of radius R0

centered on the array axis, and the region outside this circle. The contributions of dipoles
inside the circular region to the interaction field are considered individually, while the con-
tributions of the dipoles outside the circular region are obtained by replacing the dipoles
by a homogeneous polarization sheet with an average dipole moment per unit area from
which an equivalent averaged current density is obtained by multiplication by −iω. The
contribution to the interaction field of this equivalent current sheet is then obtained from
the standard integral expression for the electric field radiated by a current distribution. For
transverse element separations kh < 1, Tretyakov et al. take R0 = h/1.438, a value obtained
from static considerations, so that only the contributions of the dipoles on the array axis
are considered individually, the remainder of the array dipoles being treated as equivalent
current sheets. In contrast with this approximate method, our approach is to obtain the
interaction field by rigorously evaluating all the summations using either the Poisson sum-
mation formula or a Floquet mode expansion method, the results of which are then combined
with Schlömilch series expressions to convert the initial numerically intractable summations
to rapidly convergent forms. Our resulting kd–βd equation is valid for transverse element
separations kh < 2π rather than kh < 1 for the approximation method used by Tretyakov

4The only restrictive assumption for spherical scatterers (with radially symmetric permittivity and per-
meability) are that they are either small enough, or the frequency is such, that all scattered multipoles of
higher order than dipoles are negligible. Then with respect to the center of each sphere, orthogonality re-
lations demand that only the incident Bessel-function dipolar fields couple to the scattered Hankel-function
scattered fields. Moreover, only the incident Bessel-function electric (magnetic) dipole has a non-zero electric
(magnetic) field at the center of each sphere. The fields of all higher-order Bessel-function multipoles are
zero at the center of each sphere.
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et al., and can, as noted above, be extended if desired for any transverse element separa-
tions. Several important advantages also accrue to our approach for obtaining the kd–βd
equation centering on the expression for the field incident on the reference element rather
than on the polarization induced in the reference element. One important advantage is that
the frequency dependence for all frequencies of the scattering coefficients of array sphere
elements is incorporated in the Mie scattering coefficients, whereas Tretyakov et al. use
an approximate expression for the polarizability which is valid for ka << 1 where a is the
sphere radius. A second advantage of focusing on fields rather than polarization is that
it facilitates consideration of coupling between electric and magnetic dipoles. As we have
noted, in periodic arrays of magnetodielectric spheres the electric and magnetic dipoles are
coupled because the field scattered from an electric (magnetic) dipole has a component of
the magnetic (electric) field parallel to the magnetic (electric) dipoles of the array elements.
This coupling is fully taken into account in our framework and analysis but is neglected by
Tretyakov et al. Finally, the scattering matrix framework that underlies our work makes
it easy to generalize our approach to scattered modes higher than dipole modes, whereas
the polarization-centered approach of Tretyakov et al. would require intensive reworking to
incorporate higher order modes.

2 2D ACOUSTIC MONOPOLE ARRAYS

In this section we investigate traveling waves on 2D periodic arrays of isotropic acoustic
monopoles. The major steps of the procedure we will use here — calculating the field at
a reference element due to all the other elements in the array, deriving the kd–βd equation
by assuming a traveling wave excitation of the array, and converting slowly convergent
summations to rapidly convergent ones to obtain a form of the kd–βd equation suitable
for calculation purposes — are the same ones that we will use for all the different arrays
considered in the report. The z axis of a Cartesian coordinate system is taken here to
be the array axis and equispaced columns of acoustic monopoles parallel to the x axis are
located at z = nd, n = 0, ±1, ±2, · · · . In each column the monopoles are located at
x = mh, m = 0, ±1, ±2, · · · . We assume an excitation of the array such that all monopoles
in any column of the array are excited identically. The pressure, p0

0 (the subscript 0 is used
here and throughout the report to indicate an incident pressure or field), incident on the
monopole at the location x = 0, y = 0, z = 0, from all the other monopoles in the array is
then given by

p0
0 =

∞∑

n=−∞
n6=0

bn

∞∑

m=−∞

eikrmn

krmn
+ b0

∞∑

m=−∞
m 6=0

eikrm0

krm0
(2.1)

where rmn is the distance from the (m,n)th monopole to the (0, 0) monopole5,

rmn =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 (2.2)

and k = ω/c = 2π/λ is the free-space acoustic propagation constant where λ is the acoustic
wavelength, ω the frequency, ω > 0, and c is the acoustic wave speed. An implicit harmonic

5As long as our analysis of 2D arrays remains in the plane of the array, we will often refer to points by
their two relevant coordinates (here x and z) rather than their full three coordinates.

7



time dependence, e−iωt, is assumed here and throughout the report. In the “self-column”
(the column containing the reference (0,0) monopole), n = 0 and

rm0 = h|m| . (2.3)

The constants bn are related to the pressure incident on any monopole in the nth column,
pn0 , by the equation

bn = Spn0 (2.4)

where S is the scattering coefficient of an acoustic monopole.
We now assume that the array is excited by a traveling wave in the z direction with real

(lossless) propagation constant β. Then the constants bn in (2.1) are identical apart from a
phase shift given by

bn = b0 einβd (2.5)

and thus (2.1) becomes

p0
0 = b0

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikh
√
m2 + (nd/h)2

kh
√
m2 + (nd/h)2

+ b0

∞∑

m=−∞
m 6=0

eikh|m|

kh|m| . (2.6)

Since
b0 = S p0

0 (2.7)

we then have, multiplying through by kh,

kh = S





∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikh
√
m2 + (nd/h)2

√
m2 + (nd/h)2

+

∞∑

m=−∞
m 6=0

eikh|m|

|m|





. (2.8)

Equation (2.8) is the kd–βd equation that determines the normalized traveling wave propa-
gation constant βd in terms of kh, d/h, and the acoustic monopole scattering coefficient S.
It has been obtained very simply by substituting the traveling-wave phase shift (2.5) and
the scattering equation (2.7) into the expression (2.1) for the field at the reference element
due to all the other elements in the array. If the double summation over m and n and the
self-column summation over m in (2.8) converged rapidly we could use (2.8) to calculate
kd–βd diagrams for 2D acoustic monopole arrays and our work for these arrays would be
done. Unfortunately, however, these summations converge very slowly and hence we must
find ways of transforming these summations to rapidly convergent forms. Since, as will be
seen below, the self-column sum can be directly evaluated in closed form, we focus on the
double summation in (2.8).

One important method for converting slowly convergent summations to rapidly conver-
gent forms, and by far the simplest when it can be used for the summations encountered in
our analysis of traveling waves on periodic arrays, is the Poisson summation formula [17, pp.
315-318]. In its one-dimensional form it is given by

∞∑

m=−∞

f(m) =
∞∑

m=−∞

f̂ (m) (2.9)

8



where

f̂(m) =

∞∫

−∞

f(x) e−i2πmx dx. (2.10)

In (2.8) let

I(n) =
∞∑

m=−∞

eikh
√
m2 + (nd/h)2

√
(m2 + (nd/h)2

, n 6= 0 . (2.11)

In applying the Poisson summation formula

f(x) =
eikh

√
x2 + (nd/h)2

√
x2 + nd/h)2

, n 6= 0 . (2.12)

Then, making use of tabulated integrals [18, eqs. 3.876(1), 3.876(2)], we obtain

f̂(m) =





iπH
(1)
0

(
|n|(d/h)

√
(kh)2 − (2πm)2

)
, kh > 2π|m| , n 6= 0

2K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
, kh < 2π|m| , n 6= 0





(2.13)

with

I(n) =

∞∑

m=−∞

f̂(m) = f̂ (0) + 2

∞∑

m=1

f̂(m) . (2.14)

In (2.13) H
(1)
0 and K0 are the Hankel function of the first kind of order zero and the modified

Bessel function of order zero, respectively, and we have made use of the relation (C.1) between

H
(1)
0 and K0. If h/λ < 1 then kh < 2π so that

f̂(m) =





iπH
(1)
0 (|n|kd)) , m = 0 , n 6= 0

2K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
, |m| ≥ 1 , n 6= 0





(2.15)

I(n) = iπH
(1)
0 (|n|kd) + 4

∞∑

m=1

K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
(2.16)

and (2.8) becomes

kh = S

{
2

∞∑

n=1

cos(nβd)

[
iπH

(1)
0 (nkd) + 4

∞∑

m=1

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)]
+ 2

∞∑

m=1

eikhm

m

}
.

(2.17)
In (2.17) the slowly convergent Schlömilch series

∞∑

n=1

cos(nβd)H
(1)
0 (nkd) =

∞∑

n=1

cos(nβd) [J0(nkd) + i Y0(nkd)] (2.18)
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can be efficiently evaluated using (B.1a) and (B.2a). The series

∞∑

n=1

cos(nβd)
∞∑

m=1

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
(2.19)

converges extremely rapidly because of the exponential decay of K0. For example, for n =
m = 2, d/h > 0.5, and 0 < kh < 2π, K0(n(d/h)

√
(2πm)2 − (kh)2) < 7 × 10−6. The series

can thus be truncated keeping only a very small number of terms. The self-column sum in
(2.17) can be evaluated in closed form using (D.1).

In obtaining a convenient form of the kd–βd equation (2.17) to be used for calculations,
it is helpful to write (2.17) as

kh = S{< + i=} (2.20)

where <, the real part of the expression within the brackets of (2.17), is given by

< = −2π
∞∑

n=1

cos(nβd)Y0(nkd) + 8
∞∑

n=1

cos(nβd)
∞∑

m=1

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−2 ln

[
2 sin

(
kh

2

)]
(2.21)

and =, the imaginary part of the expression within the brackets of (2.17), is given by

= = 2π

∞∑

n=1

cos(nβd)J0(nkd) + π − kh (2.22)

so that, with (B.1a),
= = −kh . (2.23)

If we write the scattering coefficient S as

S = |S|eiψ (2.24)

and then equate imaginary parts in (2.20) we obtain the relation

|S| = sinψ . (2.25)

This relation was derived in [3] using reciprocity and power conservation relations, and has
been shown here to also be a necessary condition for a 2D array of lossless acoustic monopoles
to support a traveling wave. The derivation of (2.25) here thus serves as an important check
on the correctness of our analysis. It is worth noting that if βd < kd then, from (B.1b),∑

cos(nβd)J0(nkd) 6= −1/2 and hence = 6= −kh so that (2.25) would not hold. This is not
possible for an array of acoustic monopoles. Hence βd > kd. This is a particular instance
of the general result (1.4) noted in the Introduction which holds for 2D arrays as well as for
linear arrays. Substituting (2.25) in (2.20) and equating real parts we then obtain the form
of the kd–βd equation that is used to calculate βd as a function of kh, d/h, and the phase
ψ of the scattering coefficient,

kh cosψ −< sinψ = 0 (2.26)
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with < given by (2.21), the Neumann function sum evaluated using (B.2), the modified
Bessel function sum truncated in accordance with the remark following (2.19), and kh < 2π.
Equation (2.26) is easily solved numerically for βd given values of kd, kh, and ψ, using, for
example, a simple search procedure with secant algorithm refinement.

The key step in our analysis of traveling waves on 2D periodic arrays of lossless acoustic
monopoles was the use of the Poisson summation formula, (2.9) and (2.10), to convert the
slowly convergent double summation in (2.8) to a rapidly convergent form. The use of
the Poisson summation formula depended here on it being possible to evaluate the Fourier
transform of the function f(x) given by (2.12). If an expression had not been available for
this Fourier transform we would not have been able to use the Poisson summation formula.
Although we were fortunate here to be able to find an expression for the desired Fourier
transform, it will be seen when we come to the analysis of traveling waves on 2D and
3D periodic arrays of electric dipoles and magnetodielectric spheres that often the Fourier
transforms necessary to apply the Poisson summation formula are not available. Hence
it is extremely important to have methods other than the Poisson summation formula for
converting the slowly convergent summations that we encounter in our analyses to rapidly
convergent forms. Accordingly we will now present an alternate method which we will refer
to as the Floquet mode method.

The Floquet mode method proceeds here as follows. We begin by letting p0(x, y, z)
be the pressure radiated by the monopoles in the n = 0 column at a general point in space
(x, y, z),

√
y2 + z2 > 0. Because of the rotational symmetry of the column of monopoles, this

pressure is the same for all points for which ρ =
√
y2 + z2 has the same value. Accordingly

p0(x, y, z) = p0(x, ρ) = b0

∞∑

m=−∞

eik
√

(mh− x)2 + ρ2

k
√

(mh− x)2 + ρ2
, ρ > 0 . (2.27)

Note that we have here moved out of the plane of the 2D monopole array, something that
was not necessary in applying the Poisson summation formula. Then

p0(0, |n|d) = b0

∞∑

m=−∞

eikh
√
m2 + (nd/h)2

kh
√
m2 + (nd/h)2

, n 6= 0 . (2.28)

Hence the sum I(n) in (2.11) that we are trying to convert to a rapidly convergent form is
given by

I(n) =

∞∑

m=−∞

eikh
√
m2 + (nd/h)2

√
m2 + (nd/h)2

=
kh

b0
p0(0, |n|d), n 6= 0 . (2.29)

Now p0(x, ρ) can be expressed in terms of cylindrical waves by [20, sec. 6.6], [3, Appendix]

p0(x, ρ) =

∞∫

−∞

B(kx) H
(1)
0 (kρρ) eikxx dkx, kρ =

√
k2 − k2

x (2.30)

where kρ is positive real (positive imaginary) according as k2 > (<) k2
x. Because of the

periodicity of the array in the x direction,

p0(x+ h, ρ) = p0(x, ρ) . (2.31)
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It follows from taking the inverse Fourier transform of (2.30) inserted into (2.31) that

eikxh = 1 (2.32)

and hence
kxh = 2πm, m = 0,±1,±2, · · · (2.33)

so that

p0(x, ρ) =

∞∑

m=−∞

Bm H
(1)
0 (kmρ) ei(2π/h)mx (2.34)

where
km =

√
k2 − (2πm/h)2 (2.35)

with km positive real (positive imaginary) according as (kh)2 > (<) (2πm)2. By inversion

BmH
(1)
0 (kmρ) =

1

h

h/2∫

−h/2

p0(x, ρ) e−i(2π/h)mx dx . (2.36)

Then

I(n) =
kh

b0
p0(0, |n|d) =

kh

b0

∞∑

m=−∞

Bm H
(1)
0 (km|n|d) . (2.37)

The question now is how do we find the unknown coefficients Bm? We know from (2.36) and
(2.27) that

BmH
(1)
0 (kmρ) =

b0
kh

∞∑

m′=−∞

h/2∫

−h/2

eik
√

(m′h− x)2 + ρ2

√
(m′h− x)2 + ρ2

e−i(2π/h)mx dx . (2.38)

Since Bm is independent of ρ, for ρ << 1 the LHS of (2.38) behaves as [see (C.4)]

BmH
(1)
0 (kmρ)

ρ<<1∼ 2i

π
Bm ln ρ . (2.39)

Hence the RHS of (2.38) must also have a ln ρ singularity as ρ → 0. By equating (2i/π)Bm

with the coefficient of the ln ρ singularity of the RHS of (2.38) we can then obtain Bm. In
investigating the singularity of the RHS of (2.38) as ρ → 0 we note that we can ignore all
terms in the summation over m′ for which m′ 6= 0 since these terms are not singular as
ρ→ 0. For m′ = 0 it is simple to show, using [18, eqs. 2.271(4), 2.272(3)], that the behavior
of the RHS of (2.38) for ρ << 1 is given by

2b0
kh

h/2∫

0

eik
√
ρ2 + x2

√
ρ2 + x2

cos(2π/h)mx dx
ρ<<1∼ −2b0

kh
ln ρ . (2.40)

But then, equating the coefficients of the ln ρ singularity of the LHS and the RHS of (2.38)
as ρ→ 0 we obtain

2i

π
Bm = −2b0

kh
(2.41)
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or

Bm =
iπb0
kh

. (2.42)

Substituting (2.42) in (2.37), assuming 0 < kh < 2π, and using the relation (C.1) between

H
(1)
0 and K0 we then obtain

I(n) = iπH
(1)
0 (k|n|d) + 4

∞∑

m=1

K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
(2.43)

which is identical to the result (2.16) obtained using the Poisson summation formula.
The rapidly convergent expressions (2.14)-(2.17), (D.1), and (2.21), we have derived are

valid for adjacent element separations in the direction transverse to the array axis satisfying
the condition 0 < kh < 2π (that is, for h less than a wavelength). The important point we
wish to make now is that this condition is not an essential limitation of either the transverse
element separation or of the analysis we have performed. The condition is, rather, a matter
of our not wanting to complicate the form of the rapidly convergent expressions we give
by making them independent of the range of kh in view of the fact that in most practical
applications the tranverse element spacing is less than a wavelength. To demonstrate this,
let us assume for now that

2π < kh < 4π . (2.44)

If (2.44) holds then (2.15) becomes

f̂ (m) =





iπH
(1)
0 (|n|kd)) , m = 0 , n 6= 0

iπH
(1)
0

(
|n|(d/h)

√
(kh)2 − (2πm)2

)
, |m| = 1 , n 6= 0

2K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
, |m| > 1 , n 6= 0





(2.45)

and (2.17) becomes

kh = S

{
2

∞∑

n=1

cos(nβd)

[
iπH

(1)
0 (nkd) + 2iπH

(1)
0

(
n(d/h)

√
(kh)2 − (2π)2

)

+ 4
∞∑

m=2

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)]
+ 2

∞∑

m=1

eikhm

m

}
(2.46)

for 2π < kh < 4π. To evaluate the self-column sum 2Σexp(ikhm)/m in (2.46) when
2π < kh < 4π we let

kh = kh′ + 2π, 0 < kh′ < 2π . (2.47)

Then

2
∞∑

m=1

eikhm

m
= 2

∞∑

m=1

ei(kh
′ + 2π)m

m
= 2

∞∑

m=1

eikh
′m

m
. (2.48)
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The RHS of (D.1) then equals

− 2 ln

[
2 sin

(
kh− 2π

2

)]
+ i[π − (kh − 2π)]

= − 2 ln

[
−2 sin

(
kh

2

)]
+ i(3π − kh) . (2.49)

Equations (2.21) and (2.22) then become

< = −2π
∞∑

n=1

cos(nβd)
[
Y0(nkd) + 2Y0

(
n(d/h)

√
(kh)2 − (2π)2

)]

+ 8
∞∑

n=1

cos(nβd)
∞∑

m=2

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
− 2 ln

[
−2 sin

(
kh

2

)]
(2.50)

and

= = 2π

∞∑

n=1

cos(nβd)
[
J0(nkd) + 2J0

(
n(d/h)

√
(kh)2 − (2π)2

)]
+ (3π − kh) (2.51)

for 2π < kh < 4 π. Now

∞∑

n=1

cos(nβd)J0

(
n(d/h)

√
(kh)2 − (2π)2

)
=

∞∑

n=1

cos(nβd)J0

(
nkd

√
1 − (2π/kh)2

)
(2.52)

so that
βd ≥ kd > kd

√
1 − (2π/kh)2 (2.53)

Hence, from (B.1) with (d/h)
√

(kh)2 − (2π)2 substituted for kd,

∞∑

n=1

cos(nβd)J0

(
n(d/h)

√
(kh)2 − (2π)2

)
= −1

2
. (2.54)

But then, substituting (B.1) and (2.54) in (2.51), we obtain

= = −2π

(
1

2
+ 2

1

2

)
+ 3π − kh = −kh (2.55)

just as before in (2.23) so that (2.25), the necessary condition for a lossless traveling wave to
be supported by the array, holds as it did when we assumed that 0 < kh < 2π. In (2.50)
the sum

∞∑

n=1

cos(nβd)Y0

(
n(d/h)

√
(kh)2 − (2π)2

)
(2.56)

can be efficiently evaluated using (B.2) with (d/h)
√

(kh)2 − (2π)2 substituted for kd. We
have thus extended the analysis for the range 0 < kh < 2π to the range 2π < kh < 4π.
We could generalize this analysis for kh in the range 2πM < kh < 2π(M + 1) for arbitrary
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positive integers M . Little is gained, however, by our attempting to give expressions for
the rapidly convergent summations for arbitrary kh since, as we have said, the resulting
expressions would be considerably more involved and, in practical applications, the range
0 < kh < 2π is the one with the most importance by far. If a computer program is
written to solve the kd–βd equation using the expressions we give for 0 < kh < 2π, it is
a relatively simple matter to modify the program to allow for kh being in a different range.
These remarks apply equally well to all the arrays treated in this report.

So far we have not mentioned the case when kh = 2Mπ, M a positive integer. Consider
now as an example the kd–βd equation (2.26) with < given by (2.21), and let kh approach

2π. Form = 1, K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
is singular as kh→ 2π. Using the Schlömilch

series expression (B.4) we obtain

8

∞∑

n=1

cos(nβd) K0

(
n(d/h)

√
(2π)2 − (kh)2

)
kh→2π∼ 4γ + 4 ln

1√
4π

d

h
+ 2 ln ε+

4π

βd

+ 4π

[
∞∑

l=1

(
1

(2lπ − βd)2
− 1

2lπ

)
+

∞∑

l=1

(
1

(2lπ + βd)2
− 1

2lπ

)]
(2.57)

where γ is the Euler constant and ε = 2π − kh, 0 < ε << 1. But

− 2 ln

[
2 sin

(
kh

2

)]
= −2 ln 2 − 2 ln sin

(
kh

2

)
= −2 ln 2 − 2 sin

(
2π − ε

2

)
ε→0∼ −2 ln ε

(2.58)
canceling the logarithmic singularity of (2.57). It follows from (2.21) that in the kd − βd
equation (2.26)

lim
kh→2π

< = −2π

∞∑

n=1

cos(nβd)Y0(nkd) + 8

∞∑

n=1

cos(nβd)

∞∑

m=2

K0

(
2πn(d/h)

√
m2 − 1

)

+ 4γ + 4 ln
1√
4π

d

h
+

4π

βd
+ 4π

[
∞∑

l=1

(
1

(2lπ − βd)2
− 1

2lπ

)
+

∞∑

l=1

(
1

(2lπ + βd)2
− 1

2lπ

)]
.

(2.59)

3 3D ACOUSTIC MONOPOLE ARRAYS

In this section we investigate traveling waves supported by 3D periodic arrays of lossless
acoustic monopoles. The procedure used closely follows that used in Section 2 for 2D acoustic
monopole arrays. The z axis of a Cartesian coordinate system is taken to be the array
axis and equispaced planes of acoustic monopoles parallel to the xy plane are located at
z = nd, n = 0, ±1, ±2 · · · . In each plane the monopoles are located at (x, y) =
(mh, lh), m, l = 0, ±1, ±2, · · · . We assume an excitation of the array such that all
monopoles in any plane of the array are excited identically. The pressure, p0

0, incident on
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the monopole at the location x = 0, y = 0, z = 0 from all the other monopoles in the array
is given by

p0
0 =

∞∑

n=−∞
n6=0

bn

∞∑

m=−∞

∞∑

l=−∞

eikrmln

krmln
+ b0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikrml0

krml0
(3.1)

where rmln is the distance from the (m, l, n)th monopole to the (0, 0, 0) monopole,

rmln =
√

(m2 + l2)h2 + (nd)2 = h
√
m2 + l2 + (nd/h)2 (3.2)

and k = ω/c = 2π/λ is the acoustic propagation constant, λ is the acoustic wavelength, and
c is the acoustic wave speed. In the “self-plane” (the plane containing the reference (0,0,0)
monopole), n = 0 and

rml0 = h
√
m2 + l2 . (3.3)

The constants bn are related to the pressure incident on any monopole in the nth plane, pn0 ,
by the equation

bn = Spn0 (3.4)

where S is the scattering coefficient of an acoustic monopole.
We now assume that the array is excited by a traveling wave in the z direction with real

propagation constant β. Then the constants bn in (3.1) are identical apart from a phase shift
given by

bn = b0 einβd (3.5)

and

p0
0 = b0

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikh
√
m2 + l2 + (nd/h)2

kh
√
m2 + l2 + (nd/h)2

+ b0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

kh
√
m2 + l2

.

(3.6)
Since

b0 = Sp0
0 (3.7)

we then have, multiplying through by kh,

kh = S





∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikh
√
m2 + l2 + (nd/h)2

√
m2 + l2 + (nd/h)2

+
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2





.

(3.8)
Equation (3.8) is the kd–βd equation that determines the normalized traveling wave propa-
gation constant βd in terms of kh, d/h, and the acoustic monopole scattering coefficient S. If
the triple summation over n, m, and l, and the self-plane summation over m and l converged
rapidly we could use (3.8) to calculate kd–βd diagrams for 3D acoustic monopole arrays.
Unfortunately, however, like the corresponding summations in the 2D acoustic monopole
case, the summations converge very slowly and hence must be transformed to rapidly con-
vergent forms if (3.8) is to become practical for purposes of calculating βd as a function of
kh, d/h, and S. As will be seen below [see (3.44)] the self-plane double summation over m
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and l in (3.8) can be regarded as a special case of the quantity within the brackets in (2.8).
Accordingly here we focus on the triple summation in (3.8).

As we did in Section 2 we will use two different methods for converting the slowly con-
vergent summation to a rapidly convergent form, the Poisson summation formula method
and the Floquet mode method. The simpler of these two methods when it can be used is the
Poisson summation formula. In its two-dimensional form, it is given by [17, pp. 315-318]

∞∑

m=−∞

∞∑

l=−∞

f(m, l) =
∞∑

m=−∞

∞∑

l=−∞

f̂(m, l) (3.9)

where

f̂ (m, l) =

∞∫

−∞

∞∫

−∞

f(x, y) e−i2π(mx+ ly) dxdy . (3.10)

In (3.8) let

I(n) =
∞∑

m=−∞

∞∑

l=−∞

eikh
√
m2 + l2 + (nd/h)2

√
m2 + l2 + (nd/h)2

, n 6= 0 . (3.11)

In applying the Poisson summation formula

f(x, y) =
eikh

√
x2 + y2 + (nd/h)2

√
x2 + y2 + (nd/h)2

, n 6= 0 . (3.12)

To calculate the double Fourier transform of f(x, y) the integral over x and y is converted
to an integral over the polar coordinates ρ =

√
x2 + y2 and φ = tan−1(y/x) and the φ

integration performed using (C.7) to obtain

f̂(m, l) = 2π

∞∫

0

eikh
√
ρ2 + (nd/h)2

√
ρ2 + (nd/h)2

J0(2π
√
m2 + l2 ρ) ρ dρ , n 6= 0 . (3.13)

The ρ integration can then be performed making use of tabulated integrals [18, eqs. 6.737
(5,6)] yielding

f̂(m, l) =





i
√

2π3/2

√
|n|d/h√
kh

H
(1)
−1/2(|n|kd) , (m, l) = (0, 0) , n 6= 0

23/2
√
π

√
|n|d/h

[(2π)2(m2 + l2) − (kh)2]1/4
K1/2

(
|n|(d/h)

√
(2π)2(m2 + l2) − (kh)2

)
,

(m, l) 6= (0, 0) , n 6= 0





(3.14)
assuming that 0 < kh < 2π. Substituting explicit expressions for the spherical Bessel
functions [18, eqs. 8.469 (3,6)]

H
(1)
−1/2(z) =

(
2

πz

)1/2

eiz , K1/2(z) =
( π

2z

)1/2

e−z (3.15)
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we then obtain

f̂(m, l) =





2πi

kh
ei|n|kd , (m, l) = (0, 0) , n 6= 0

2π
e−|n|(d/h)

√
(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

, (m, l) 6= (0, 0) , n 6= 0





(3.16)

with

I(n) =
∞∑

m=−∞

∞∑

l=−∞

f̂(m, l) (3.17)

and (3.8) becomes

kh = S

{
2

∞∑

n=1

cos(nβd)




2πi

kh
einkd + 2π

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2




+
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2

}
(3.18)

for 0 < kh < 2π.
From (D.5)

2
∞∑

n=1

cos(nβd)
2πi

kh
einkd = −2π

kh

sin kd

cosβd− cos kd
− i

2π

kh
. (3.19)

The sum
∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(3.20)

converges very rapidly because of the negative exponential so that it is necessary to include
only a few terms in the sum, for example n from 1 to 2 and m, l from −2 to 2, for sufficient
accuracy. Alternately an approximation to the sum can be obtained by first performing the
summation over n from 1 to ∞ in closed form using (D.4) and then including only terms in
the summation over m and l from −1 to 1. When this is done we obtain

∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

≈ 4

(
1

r1

e−(d/h)r1 cosβd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1
+

1

r2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2

)

(3.21)
where r1 =

√
(2π)2 − (kh)2, and r2 =

√
8π2 − (kh)2.
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Before considering the self-plane summation in (3.8) or (3.18) we will demonstrate the use
of the Floquet mode method to convert I(n) in (3.11) to a rapidly convergent form. Following
the Floquet mode treatment in Section 2 we begin by letting p0(x, y, z) be the pressure
radiated by the monopoles in the n = 0 plane at a general point in space (x, y, z), z 6= 0, so
that

p0(x, y, z) = b0

∞∑

m=−∞

∞∑

l=−∞

eikr(m, l, x, y, z)

kr(m, l, x, y, z)
(3.22)

where r(m, l, x, y, z) is the distance from the (m, l, 0) monopole in the n = 0 plane to the
point (x, y, z),

r(m, l, x, y, z) =
√

(mh− x)2 + (lh− y)2 + z2, z 6= 0 . (3.23)

Then

p0(0, 0, |n|d) = b0

∞∑

m=−∞

∞∑

l=−∞

eikh
√
m2 + l2 + (n(d/h))2

kh
√
m2 + l2 + (nd/h)2

, n 6= 0 . (3.24)

Hence the sum I(n) in (3.11) that we are trying to convert to a rapidly convergent form is
given by

I(n) =
∞∑

m=−∞

∞∑

l=−∞

eikh
√
m2 + l2 + (nd/h)2

√
m2 + l2 + (nd/h)2

=
kh

b0
p0(0, 0, |n|d), n 6= 0 . (3.25)

Now p0(x, y, |z|) can be expressed in terms of a plane-wave spectrum by

p0(x, y, |z|) =

∞∫

−∞

∞∫

−∞

B(kx, ky) ei(kxx+ kyy + kz|z|) dkxdky, kz =
√
k2 − k2

x − k2
y (3.26)

where kz is positive real (positive imaginary) according as k2 > (<) k2
x + k2

y . Because of the
periodicity of the array in the x and y directions,

p0(x+ h, y, |z|) = p0(x, y, |z|) , p0(x, y + h, |z|) = p0(x, y, |z|) . (3.27)

It follows from taking the inverse transform of (3.26) inserted into (3.27) that

eikxh = 1 , eikyh = 1 (3.28)

and hence

kxh = 2πm, m = 0,±1,±2, · · · , kyh = 2πl, l = 0,±1,±2, · · · (3.29)

so that

p0(x, y, |z|) =
∞∑

m=−∞

∞∑

l=−∞

Bml e
i(2π/h)(mx+ ly) eikml|z| (3.30)

where
kml =

√
k2 − (2πm/h)2 − (2πl/h)2 (3.31)
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and kml is positive real (positive imaginary) according as (kh)2 > (<) (2π)2(m2 + l2). By
inverting (3.30)

Bml e
ikml|z| =

1

h2

h/2∫

−h/2

h/2∫

−h/2

p0(x, y, |z|) e−i(2π/h)(mx+ ly) dxdy . (3.32)

Then

I(n) =
kh

b0
p0(0, 0, |n|d) =

kh

b0

∞∑

m=−∞

∞∑

l=−∞

Bml e
ikml|n|d . (3.33)

It remains to find the unknown coefficients Bml. Now from (3.32), (3.22), and (3.23)

Bml e
ikml|z|

=
b0
kh2

∞∑

m′=−∞

∞∑

l′=−∞

h/2∫

−h/2

h/2∫

−h/2

eik
√

(m′h− x)2 + (l′h− y)2 + z2

√
(m′h− x)2 + (l′h− y)2 + z2

e−i(2π/h)(mx+ ly) dxdy .

(3.34)
Since Bml is independent of z, if the LHS of (3.34) is expanded for small |z|

Bml eikml|z| |z|<<1∼ Bml(1 + ikml|z|) . (3.35)

We can then obtain an expression for Bml by investigating the behavior of the RHS of (3.34)
for |z| << 1 and equating coefficients of |z|. [Note that this method for obtaining the
coefficients of the Floquet mode expansion differs from that used in Section 2 in the 2D case
where we obtained the unknown coefficients by equating coefficients of a ln ρ singularity for
small ρ; see (2.38)-(2.42).]

Consider first the terms in the double summation for which (m′, l′) 6= (0, 0). Letting

A2 = (m′h− x)2 + (l′h− y)2 (3.36)

and assuming that z2 << A2 we find that

eik
√

(m′h− x)2 + (l′h− y)2 + z2

√
(m′h− x)2 + (l′h− y)2 + z2

=
eik

√
A2 + z2

√
A2 + z2

≈ eikA

A

[
1 +

(
ik

2A
− 1

2A2
z2

)
+ · · ·

]

(3.37)
so that the terms in the double summation for which (m′, l′) 6= (0, 0) do not contain a term
in |z| for |z| << 1 . Hence a term in |z| must come from the (m′, l′) = (0, 0) term.

The (m′, l′) = (0, 0) term, converted to polar coordinates ρ =
√
x2 + y2, φ = tan−1(y/x),

is approximately

b0
kh2

h/2∫

0

2π∫

0

eik
√
ρ2 + z2

√
ρ2 + z2

e−i(2π/h)(m cosφ+ l sin φ)ρρ dρ dφ (3.38)
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We can obtain a term in |z| for |z| << 1 only from the portion of the integral in the vicinity
of ρ = 0. Expanding the trigonometric exponential, (3.38) is approximately equal to

b0
kh2

h/2∫

0

2π∫

0

eik
√
ρ2 + z2

√
ρ2 + z2

[
1 − i (2π/h)(m cos φ+ l sinφ)ρ

− 1

2
(2π/h)2(m2 cos2 φ+ l2 sin2 φ+ 2ml cos φ sinφ)ρ2

]
ρ dρ dφ (3.39)

from which, performing the φ integration, we obtain

πb0
kh2

h/2∫

0

eik
√
ρ2 + z2

√
ρ2 + z2

[
2 − 1

2
(2π/h)

2
(m2 + l2)ρ2

]
ρ dρ . (3.40)

The ρ integration can be performed exactly by making the change of variables u =
√
ρ2 + z2.

The integral is then evaluated at the lower end of the range of integration u = |z| (there is no
contribution to a term in |z| from the upper end, u =

√
(h/2)2 + z2 ), and the exponential

exp(ik|z|) expanded. Collecting terms in |z| we then find that the RHS of (3.34) when
(m′, l′) = (0, 0) behaves as

−2πb0
kh2

|z| (3.41)

for |z| << 1 . (It is found that there is no contribution to the term in |z| from the trigono-
metric exponential.) But then, equating the coefficients of |z| in (3.35) and (3.41),

Bml =
2πib0
kh2kml

, kml =
√
k2 − (2πm/h)2 − (2πl/h)2 (3.42)

and hence from (3.33)

I(n) = 2πi
∞∑

m=−∞

∞∑

l=−∞

ei|n|(d/h)
√

(kh)2 − (2π)2(m2 + l2)
√

(kh)2 − (2π)2(m2 + l2)

=
2πi

kh
ei|n|kd + 2π

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(3.43)

an expression identical to that obtained using the Poisson summation formula [see (3.16)
and (3.17)]. Although the Floquet mode method is more complicated than the Poisson
summation formula method, it does have the advantage here of yielding the same final result
as the Poisson method without going through an intermediate spherical Bessel function
representation, and of course does not depend on the availability of integrals to evaluate a
Fourier transform.
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Next we consider the self-plane sum in (3.8)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2

(3.44)

which we can write as

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2

= 2

∞∑

l=1

∞∑

m=−∞

eikh
√
m2 + l2

√
m2 + l2

+ 2

∞∑

m=1

eikhm

m
. (3.45)

Comparing (3.45) with (2.8) we see that the double sum over l and m in the RHS of (3.45)
is identical with the double sum over n and m in (2.8) if n is replaced by l, βd is taken equal
to 0, and d = h. Thus, referring to the treatment of the double sum over n and m in Section
2 in (2.9)-(2.17)

2
∞∑

l=1

∞∑

m=−∞

eikh
√
m2 + l2

√
m2 + l2

= 2
∞∑

l=1

[
iπH

(1)
0 (lkh) + 4

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)]

. (3.46)

The slowly convergent Schlömilch series

∞∑

l=1

H
(1)
0 (lkh) (3.47)

can be evaluated using (B.11) and (B.12). The series

∞∑

l=1

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)

(3.48)

converges extremely rapidly because of the exponential decay of K0 (for example, for l =
m = 2, and kh < 2π, K0(l

√
(2πm)2 − (kh)2) < 9.5 × 10−11) so that only a few terms of the

series need be included.
The self-column sum over m in (3.45) is identical with that in (2.8) and hence from (D.1)

2
∞∑

m=1

eikhm

m
= −2 ln

[
2 sin

(
kh

2

)]
+ i(π − kh), 0 < kh < 2π. (3.49)

As we did in Section 2 [see (2.20)], it is useful in obtaining a convenient form of the kd–βd
equation (3.18) for calculation purposes to first write the equation as

kh = S{< + i=} (3.50)

where, from (3.18), (3.19), (3.46), and (3.49), <, the real part of the expression within the
brackets of (3.18) is given by

< = −2π

kh

sin kd

cos βd− cos kd
+4π

∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2
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− 2π
∞∑

l=1

Y0(lkh) + 8
∞∑

l=1

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)
− 2 ln

[
2 sin

(
kh

2

)]
(3.51)

and =, the imaginary part of the expression within the brackets of (3.18), is given by

= = −2π

kh
+ 2π

∞∑

l=1

J0(lkh) + π − kh = −kh (3.52)

using (B.11). Equations (2.24)-(2.26) then hold here exactly as they did for the 2D array
treated in Section 2. Once again we thus obtain as a useful check on the correctness of our
analysis the relation |S| = sinψ where ψ is the argument of the acoustic monopole scattering
coefficient S, a relation derived independently in [3] from reciprocity and power conservation
relations, and the final form of the kd–βd equation is again

kh cosψ −< sinψ = 0 (3.53)

with < here given by (3.51) and kh < 2π. Equation (3.53) is easily solved numerically for
βd given values of kd, kh, and ψ, using, for example, a simple search procedure with secant
algorithm refinement. In calculating < the sum of the exponentials is either truncated
in accordance with the remark following (3.20) or evaluated using (3.21), the Neumann
function sum is evaluated using (B.12), and the modified Bessel function sum is truncated
in accordance with the remark following (3.48).

The rapidly convergent expressions (3.18), (3.46), and (3.49) we have derived are valid
for adjacent element separations in the directions normal to the array axis satisfying the
condition 0 < kh < 2π. As we showed in Section 2 [see (2.44)-(2.56)] this condition is not
an essential limitation of either the transverse element separation or of the analysis we have
performed. Rather it is a matter of our not wanting to complicate the rapidly convergent
expressions we give by making them independent of the range of kh since in most practical
applications the transverse element spacings can be expected to be less than a wavelength.
To demonstrate this here, let us assume for now that

2π < kh < 4π . (3.54)

If (3.54 holds then (3.16) becomes

f̂(m, l) =





2πi ei|n|(d/h)
√

(kh)2 − (2π)2(m2 + l2)√
(kh)2 − (2π)2(m2 + l2)

, (m, l) = (0, 0), (±1, 0), (0,±1) , n 6= 0

2π
e−|n|(d/h)

√
(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

, (m, l) 6= (0, 0), (±1, 0), (0,±1) , n 6= 0





(3.55)
and (3.18) becomes

kh = S

{
2

∞∑

n=1

cos(nβd)

[
2πi

kh
einkd + 8πi

ein(d/h)
√

(kh)2 − (2π)2

√
(kh)2 − (2π)2
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+ 2π
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

]
+

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2

}
.

(3.56)
In (3.56), from (3.19)

2
∞∑

n=1

cos(nβd)
2πi

kh
einkd = −2π

kh

sin kd

cos βd− cos kd
− i

2π

kh
(3.57)

and

2
∞∑

n=1

cos(nβd) 8πi
ein(d/h)

√
(kh)2 − (2π)2

√
(kh)2 − (2π)2

= − 8π√
(kh)2 − (2π)2

sin
(
(d/h)

√
(kh)2 − (2π)2

)

cos βd− cos
(
(d/h)

√
(kh)2 − (2π)2

) − 8πi√
(kh)2 − (2π)2

. (3.58)

The self-plane double sum given for kh < 2π by (3.46) now becomes

2
∞∑

l=1

∞∑

m=−∞

eikh
√
m2 + l2

√
m2 + l2

=
∞∑

l=1

[
iπH

(1)
0 (lkh) + 2iπH

(1)
0

(
l
√

(kh)2 − (2π)2
)

+ 4

∞∑

m=2

K0

(
l
√

(2πm)2 − (kh)2
)]

(3.59)

and the self-column sum given by (3.49) for kh < 2π becomes [see (2.49)]

2
∞∑

m=1

eikhm

m
= −2 ln−

[
2 sin

(
kh

2

)]
+ i(3π − kh), 0 < kh < 2π. (3.60)

From (3.56)-(3.60) we see that =, the imaginary part of the quantity within the brackets of
(3.56), is

= = −2π

kh
− 8π√

(kh)2 − (2π)2
+ 2π

∞∑

l=1

J0(lkh) + 4π
∞∑

l=1

J0

(
l
√

(kh)2 − (2π)2
)

+ 3π − kh

= −2π

kh
− 8π√

(kh)2 − (2π)2
+ 2π

[
−1

2
+

1

kh
+ 2

1√
(kh)2 − (2π)2

]

+ 4π

[
−1

2
+

1√
(kh)2 − (2π)2

]
+ 3π − kh = −kh (3.61)

where we have made use of the Schlömilch series formula (B.11) and (B.11) with
√

(kh)2 − (2π)2

substituted for kh to sum the Bessel function series. As noted above in connection with
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(3.52), the equality = = −kh serves as an important check on the correctness of our analysis
because it implies (2.25), a necessary condition for a lossless traveling wave to be supported
by the array. From (3.56)-(3.60) we find that <, the real part of the quantity within the
brackets of (3.56), is

< = −2π

kh

sin kd

cosβd− cos kd
− 8π√

(kh)2 − (2π)2

sin
(
(d/h)

√
(kh)2 − (2π)2

)

cosβd− cos
(
(d/h)

√
(kh)2 − (2π)2

)

+ 4π
∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− 2π
∞∑

l=1

Y0(lkh) − 4π
∞∑

l=1

Y0

(
l
√

(kh)2 − (2π)2
)

+ 8
∞∑

l=1

∞∑

m=2

K0(
(
l
√

(2π)2 − (kh)2
)

− 2 ln

[
−2 sin

(
kh

2

)]
, 2π < kh < 4π . (3.62)

In calculating < the sum of the exponentials and the sum of the modified Bessel functions
converge very rapidly, and the Neumann function sums are evaluated very efficiently using
(B.12), and (B.12) with

√
(kh)2 − (2π)2 substituted for kh.

In concluding, let us investigate the limit of the kd–βd equation (3.53) as kh→ 2π from
below. The double sum of the modified Bessel functions in (3.51)

8
∞∑

l=1

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)

(3.63)

has two singularities for m = 1. Using the Schlömilch series summation formula (B.4) with
d/h = 1 and βd = 0 we find that

8
∞∑

l=1

K0

(
l
√

(2π)2 − (kh)2
)
kh→2π∼ 4γ + 4 ln

1√
4π

+ 2 ln ε+ 2

√
π

ε
(3.64)

where γ is the Euler constant and we have let kh = 2π − ε, 0 < ε << 1. The logarithmic
singularity exactly cancels the logarithmic singularity of

−2 ln

[
2 sin

(
kh

2

)]
(3.65)

in (3.51) as kh→ 2π [see (2.58)]. Next let us consider the singularity of

4π

∞∑

n=1

cos(nβd)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(3.66)
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in (3.51). The four terms of the double summation over m and l for which (m, l) =
(±1, 0), (0,±1) are singular as kh→ 2π, each of these terms behaving as

1√
4πε

(3.67)

for ε = 2π − kh << 1. Since from (D.5)

∞∑

n=1

cos(nβd) = − 1

2
(3.68)

4π
∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

ε→0∼ 2
∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−2πn(d/h)
√
m2 + l2 − 1

√
m2 + l2 − 1

− 4

√
π√
ε
. (3.69)

The sum
∑
Y0(lkh) in (3.51) can be evaluated using the Schlömilch series summation formula

(B.12). We then find that

−2π
∞∑

l=1

Y0(lkh)
kh→2π∼ 2γ + 2 ln

1

2
− 2 + 2

∞∑

l=2

(
1√
l2 − 1

− 1

l

)
+ 2

√
π√
ε

(3.70)

where we have again let kh = 2π− ε. Thus the 1/
√
ε singularities of the sum of the modified

Bessel functions in (3.64), the sum of the exponentials in (3.69), and the sum of the Neumann
functions in (3.70) cancel each other. It follows from (3.51) that in the kd–βd equation (3.53)

lim
kh→2π

< = − sin kd

cosβd− cos kd

+ 2
∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−2πn(d/h)
√
m2 + l2 − 1

√
m2 + l2 − 1

+ 4 ln
1√
4π

+ 6γ + 2 ln
1

2
− 2 + 2

∞∑

l=2

(
1√
l2 − 1

− 1

l

)
. (3.71)

From (3.21) it follows that

2
∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−2πn(d/h)
√
m2 + l2 − 1

√
m2 + l2 − 1

≈ 4

π

e−2πd/h) cos βd− e−4π(d/h)

1 − 2 cos βd e−2πd/h + e−4πd/h
. (3.72)
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4 2D ELECTRIC DIPOLE ARRAYS, DIPOLES ORI-

ENTED PERPENDICULAR TO THE ARRAY AXIS

In this section we consider traveling waves supported by 2D periodic arrays of lossless short
electric dipoles oriented perpendicular to the array axis. The major steps of the procedure
we will follow — calculating the field at a reference element due to all the other elements
in the array, deriving the kd–βd equation by assuming a traveling wave excitation of the
array, and converting slowly convergent summations to rapidly convergent ones to obtain a
form of the kd–βd equation suitable for calculation purposes — are the same ones we have
used in treating 2D and 3D periodic arrays of lossless acoustic monopoles in Sections 2 and
3, respectively. The details of the procedure are more complicated, however, because the
field radiated by an electric dipole contains eikr/(kr)2 and eikr/(kr)3 terms in addition to an
eikr/(kr) term. There are two polarizations of the electric dipoles to be considered, one where
the dipoles are in the array plane determined by the dipole centers and array axis, and the
other where the dipoles are perpendicular to the array plane. These two polarizations are
treated in Subsections 4.1 and 4.2, respectively. In 4.1, as will be seen below when we come
to the kd–βd equation (4.15), the Poisson summation formula cannot be used to convert the
slowly convergent summations to rapidly convergent ones because all the integrals needed
to evaluate the transforms are not available. The Floquet mode method of Section 2 can
be used, however, and in addition an alternate method for obtaining the coefficients in the
Floquet mode expansion, based on the Hertz vector potential, will be introduced. In 4.2
the Poisson summation formula can be used to convert the slowly convergent summations
to rapidly convergent ones. As a check we will also use the Floquet mode method to derive
the rapidly convergent expressions.

4.1 ELECTRIC DIPOLES IN THE ARRAY PLANE

It is more convenient here to take the x axis, rather than the z axis, of a Cartesian coordinate
system to be the array axis, with the electric dipoles oriented in the z direction, because
the field of a small electric dipole is expressed most simply in a spherical polar coordinate
system with the z axis aligned with the dipole direction. Equispaced columns of electric
dipoles are located at x = nd, n = 0, ±1, ±2, · · · . In each column the dipoles are centered
at z = mh, m = 0, ±1, ±2, · · · , so that the dipoles lie in the xz plane, the plane of the
array. We assume an excitation of the array with the electric field parallel to the z axis
and such that all the dipoles in any column of the array are excited identically. Let E0

0 be
the electric field incident on the electric dipole at the location x = 0, y = 0, z = 0 from all
the other dipoles in the array. As will be seen [see (4.9)] this field has a z component only.
Let E0mn

0 be the electric field incident on the reference dipole from the electric dipole at the
location (z, x) = (mh,nd) so that

E0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

E0mn
0 +

∞∑

m=−∞
m 6=0

E0m0
0 . (4.1)
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From [4, eq. (40)]

E0mn
0 = bn

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
cos θmn0 r̂mn0

−
(

1 +
i

krmn0
− 1

(krmn0)2

)
sin θmn0 θ̂mn0

]
. (4.2)

The quantities in (4.2) are defined with reference to a local spherical polar coordinate system
with origin at (z, x) = (mh,nd) (in turn defined with reference to a local Cartesian coordi-
nate system with the same origin whose axes are parallel to those of the global Cartesian
coordinate system). The distance from the (m,n) dipole to the (0, 0) dipole, rmn0, is given
by

rmn0 =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 (4.3)

and the unit vector in the direction from the (m,n) dipole to the (0, 0) dipole, r̂mn0, is

r̂mn0 = rmn0/rmn0, rmn0 = −mh ẑ − nd x̂ (4.4)

so that

cos θmn0 = r̂mn0 · ẑ = − mh

rmn0

(4.5)

sin θmn0 =
√

1 − cos2 θmn0 =
|n|d
rmn0

(4.6)

and

θ̂mn0 = ± cos θmn0 x̂ − sin θmn0 ẑ = ∓ mh

rmn0
x̂ − |nd|

rmn0
ẑ , n <

> 0 . (4.7)

The free-space propagation constant k = 2π/λ = ω/c where λ is the wavelength, c is the
speed of light, and ω is the frequency, ω > 0. The corresponding quantities in the self-column
summation of (4.1) are obtained from the quantities given by (4.3)-(4.7) by setting n = 0.
The constants bn are related to the z component of the electric field incident on any dipole
in the nth column by the scattering equation [4, eq. (59)]

bn = SE0n
0z (4.8)

where S is the normalized dipole scattering coefficient of a short electric dipole. “Normalized”
here means that bn is the coefficient of exp(ikr)/(kr) in the transverse component of the
outgoing electric field in response to the incident field E0n

0z ẑ at the center of the z directed
electric dipole. When E0mn

0 and E0m0
0 are summed over a column from m = −∞ to ∞ in

(4.1) the x components of the electric field incident on the reference (0, 0) electric dipole
vanish and the z components add. Then

E0
0 = E0

0z ẑ (4.9)

with

E0
0z =

∞∑

n=−∞
n6=0

bn

∞∑

m=−∞

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
(mh)2

r2
mn0
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+

(
1 +

i

krmn0
− 1

(krmn0)2

)
(nd)2

r2
mn0

]
+ 4b0

∞∑

m=1

eikrm00

krm00

−i

krm00

(
1 +

i

krm00

)
(4.10)

where rmn0 is given by (4.3) and
rm00 = mh . (4.11)

We now assume that the array is excited by a traveling wave in the x direction with real
propagation constant β. Then the constants bn in (4.10) are identical apart from a phase
shift given by

bn = b0 einβd (4.12)

and

E0
0z = b0

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
(mh)2

r2
mn0

+

(
1 +

i

krmn0
− 1

(krmn0)2

)
(nd)2

r2
mn0

]
+ 4b0

∞∑

m=1

eikrm00

krm00

−i

krm00

(
1 +

i

krm00

)
. (4.13)

Since from (4.8)
b0 = SE0

0z (4.14)

it follows by substituting (4.14) in (4.13) and multiplying by (kh)3 that

(kh)3 = S

{
∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]
+ 4

∞∑

m=1

eikhρm0

ρm0

−i

ρm0

(
kh +

i

ρm0

)}
(4.15)

where we have let

ρmn =

√
m2 + (nd/h)2 (4.16)

with
ρm0 = m . (4.17)

Equation (4.15) is the kd–βd equation that determines the normalized traveling wave prop-
agation constant βd in terms of kh, d/h, and the normalized electric dipole scattering coef-
ficient S.

To use the Poisson summation formula method to convert the slowly convergent double
summation in (4.15) to a rapidly convergent form, we would need expressions for the inte-

grals of functions like
∞∫
0

cos(p
√
x2 + a2)x2/(x2 + a2)2 dx,

∞∫
0

sin(p
√
x2 + a2x2/(x2 + a2)5/2 dx,

∞∫
0

cos(p
√
x2 + a2)/(x2 + a2)5/2 dx, etc. Unfortunately these integrals do not appear to be

tabulated so that we are unable to use the Poisson summation formula method here. Ac-
cordingly we will use the Floquet mode method.
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The Floquet mode method proceeds here similarly to how it was used in Section 2, (2.27)-
(2.43). We begin by letting E0

z (z, ρ) be the z component of the electric field radiated by all
the electric dipoles in the n = 0 column at a general point in space (z, ρ), ρ > 0. (Note that
because of symmetry, this field is the same for all points (z, x, y) such that z2 + y2 = ρ2.)
We establish a local spherical polar coordinate system with origin at the dipole located at
(z, x) = (mh, 0) and with θ(m, z, ρ) the polar angle from the z axis to the vector r(m, z, ρ)
from (mh, 0) to a field point (z, ρ). The distance r(m, z, ρ) from (mh, 0) to (z, ρ) is given by

r(m, z, ρ) =
√

(z −mh)2 + ρ2 (4.18)

cos θ(m, z, ρ) =
z −mh

r(m, z, ρ)
(4.19)

sin θ(m, z, ρ) =
ρ

r(m, z, ρ)
(4.20)

[cos θ(m, z, ρ) r̂(m, z, ρ)]z = cos2 θ(m, z, ρ) =
(z −mh)2

r2(m, z, ρ)
(4.21)

and [
sin θ(m, z, ρ) θ̂(m, z, ρ)

]
z

= − sin2 θ(m, z, ρ) = − ρ2

r2(m, z, ρ)
. (4.22)

Then, referring to (4.2)

E0
z (z, ρ) = b0

∞∑

m=−∞

eikr(m, z, ρ)

kr(m, z, ρ)

[
−2i

kr(m, z, ρ)

(
1 +

i

kr(m, z, ρ)

)
(z −mh)2

r2(m, z, ρ)

+

(
1 +

i

kr(m, z, ρ)
− 1

(kr(m, z, ρ))2

)
ρ2

r2(m, z, ρ)

]
, ρ > 0 . (4.23)

For ρ = |n|d

E0
z (0, |n|d) = b0

∞∑

m=−∞

eikr(m, 0, |n|d)

kr(m, 0, |n|d)

[
−2i

kr(m, 0, |n|d)

(
1 +

i

kr(m, 0, |n|d)

)
(mh)2

r2(m, 0, |n|d)

+

(
1 +

i

kr(m, 0, |n|d)
− 1

(kr(m, 0, |n|d))2

)
(nd)2

r2(m, 0, |n|d)

]
(4.24)

with
r(m, 0, |n|d) =

√
(mh)2 + (nd)2 . (4.25)

Since
r(m, 0, |n|d) = hρmn (4.26)

with ρmn defined by (4.16),

E0
z (z, |n|d) = b0

∞∑

m=−∞

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
m2

ρ2
mn
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+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
(nd/h)2

ρ2
mn

]
. (4.27)

Hence in (4.15)

∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]
=

(kh)3

b0
E0
z (0, |n|d) .

(4.28)
We proceed to find an expression for E0

z (z, ρ) from which we can then obtain E0
z (0, |n|d).

Now E0
z (z, ρ) can be expressed in terms of cylindrical waves by [20, sec. 6.6]

E0
z (z, ρ) =

∞∫

−∞

B(kz)H
(1)
0 (kρρ) eikzz dkz, kρ =

√
k2 − k2

z (4.29)

where kρ is positive real (positive imaginary) according as k2 > (<) k2
z . Because of the

periodicity of the array in the z direction,

E0
z (z + h, ρ) = E0

z (z, ρ) . (4.30)

It follows by inverting (4.29) and inserting into (4.30) that

eikzh = 1 (4.31)

and hence
kzh = 2πm, m = 0,±1,±2, · · · (4.32)

so that

E0
z (z, ρ) =

∞∑

m=−∞

BmH
(1)
0 (kmρ) ei(2π/h)mz (4.33)

where
km =

√
k2 − (2πm/h)2 (4.34)

with km positive real (positive imaginary) according as (kh)2 > (<) (2πm)2. By inversion

BmH
(1)
0 (kmρ) =

1

h

h/2∫

−h/2

E0
z (z, ρ) e−i(2π/h)mz dz . (4.35)

Then
(kh)3

b0
E0
z (0, |n|d) =

(kh)3

b0

∞∑

m=−∞

BmH
(1)
0 (km|n|d) . (4.36)

From (4.35) and (4.23)

BmH
(1)
0 (kmρ) =

b0
kh

∞∑

m′=−∞

h/2∫

−h/2

eikr(m
′, z, ρ)

r(m′, z, ρ)

[
−2i

kr(m′, z, ρ)

(
1 +

i

kr(m′, z, ρ)

)
(z −m′h)2

r2(m′, z, ρ)
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+

(
1 +

i

kr(m′, z, ρ)
− 1

(kr(m′, z, ρ))2

)
ρ2

r2(m′, z, ρ)

]
e−i(2π/h)mz dz (4.37)

with
r(m′, z, ρ) =

√
(z −m′h)2 + ρ2 . (4.38)

Since Bm is independent of ρ, for ρ << 1 the LHS of (4.37) behaves as [see (C.4)]

BmH
(1)
0 (kmρ)

ρ<<1∼ 2i

π
Bm ln ρ . (4.39)

Hence the RHS of (4.37) must also have a ln ρ singularity as ρ → 0. In investigating the
singularity of the RHS of (4.37) as ρ → 0 we note that we can ignore all terms in the
summation over m′ for which m′ 6= 0 since these terms are not singular as ρ→ 0. We must
therefore consider the behavior for ρ << 1 of

2b0
kh

h/2∫

0

eikr(0, z, ρ)

r(0, z, ρ)

[
−2i

kr(0, z, ρ)

(
1 +

i

kr(0, z, ρ)

)
z2

r2(0, z, ρ)

+

(
1 +

i

kr(0, z, ρ)
− 1

(kr(0, z, ρ))2

)
ρ2

r2(0, z, ρ)

]
cos(2π/h)mz dz (4.40)

where
r(0, z, ρ) =

√
z2 + ρ2 . (4.41)

Any logarithmic singularity of (4.40) as ρ → 0 must come from the vicinity of z = 0.
To obtain the logarithmic singularity we expand both exp(ikr(0, z, ρ)) and cos(2π/h)mz
in power series, systematically integrate all the resulting indefinite integrals using integrals
tabulated in [18, eqs. 2.17, 2.26], evaluate the integrals at the lower end of the range of
integration, z = 0, and collect terms in ln ρ. (There is no contribution to the logarithmic
singularity from the upper end of the interval of integration, z = h/2.) The procedure
is laborious but straightforward. We find that it is necessary to include terms through
−[kr(0, z, ρ)]2/2 in the expansion of the exponential and terms through −(2πm/h)2z2/2 in
the expansion of the cosine to include all contributions to the ln ρ singularity. When this is
done we find that the RHS of (4.37) behaves as

−2b0
kh

[
1 −

(
2πm

kh

)2
]

ln ρ (4.42)

for ρ << 1. But then, equating the coefficient of the ln ρ singularity of the LHS of (4.37)
given by (4.39) with the coefficient of the ln ρ singularity of the RHS of (4.37) given by (4.42)
and solving for Bm, we obtain

Bm =
iπb0
kh

[
1 −

(
2πm

kh

)2
]
. (4.43)
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Hence, in (4.15) from (4.28), (4.36), and (4.43),

∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]

= iπ

∞∑

m=−∞

[
(kh)2 − (2πm)2

]
H

(1)
0 (km|n|d)

= iπ(kh)2H
(1)
0 (k|n|d) − 4

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
(4.44)

where we have assumed that h/λ < 1 ( kh < 2π) and made use of the relationship (C.1)

between H
(1)
0 and K0. Substituting (4.44) in (4.15) and replacing ρm0 by m [see (4.17)] we

obtain

(kh)3 = S

{
2

∞∑

n=1

cos(nβd)

[
iπ(kh)2H

(1)
0 (nkd)

− 4
∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)]

+ 4
∞∑

m=1

eikhm

m

−i

m

(
kh+

i

m

)}
(4.45)

for kh < 2π. The slowly convergent Schlömilch series

∞∑

n=1

cos(nβd)H
(1)
0 (nkd) (4.46)

in (4.45) can be efficiently evaluated using (B.1) and (B.2). The sum

∞∑

n=1

cos(nβd)

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
(4.47)

converges very rapidly because of the exponential decay of K0. For example, for n = 2,

m = 3, d/h > 0.5, and 0 < kh < 2π, K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
[(2πm)2 − (kh)2] <

1.8 × 10−6. The series can thus be truncated keeping only a very few terms.
Before considering the self-column sum in (4.45) we will present an alternate method,

based on the Hertz vector potential, for obtaining the coefficients Bm in the Floquet mode
expansion (4.33). The method is very useful in its own right and will serve here as an
important check on the correctness of the expression (4.43) that we have derived for the
coefficients Bm in the Floquet mode expansion. We begin by noting [21, secs. 14-5,14-7]
that the electric field of a small z directed dipole at the origin of a Cartesian coordinate
system is given by

C ∇ × ∇×
(

eikr

kr
ẑ

)
= C

(
∇∇· − ∇2

) eikr

kr
ẑ . (4.48)
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where C is a proportionality constant. Since (4.2) with n = 0 and the triple subscripts
dropped also gives the field radiated by a small z directed electric dipole located at the
origin, the value of C can be found easily by expanding (4.48) in spherical coordinates
(using, for example, [22, Appendix 1, eqs. 119, 161]) and equating the 1/(kr) term of the θ
component of the field with the corresponding 1/(kr) term of (4.2). We thereby obtain

C =
b0
k2

. (4.49)

Since the z component of an electric field satisfies the scalar wave equation, then using the
expressions [22, Appendix 1, eqs. 58, 57] for ∇∇· and ∇2 in Cartesian coordinates we see
that the z component of the electric dipole field is given by

C

(
∂2

∂z2
+ k2

)
eikr

kr
. (4.50)

Now from (2.34) and (2.42) the field radiated by the acoustic monopoles located in the
column x = 0, y = 0 at z = 0, ±h, ±2h, · · · , each of which radiates a field equal to

eikr/(kr) is (allowing for the different choice of coordinate axes in this section as compared
with Section 2)

∞∑

m=−∞

B0
mH

(1)
0 (kmρ) ei(2π/h)mz, km =

√
k2 − (2πm/h)2 (4.51)

with

B0
m =

iπ

kh
(4.52)

and km positive real or positive imaginary. Hence from (4.50) the z component of the electric
field radiated by a periodic linear array of z directed electric dipoles on the z axis (x = 0) is
equal to

C

∞∑

m=−∞

B0
m

(
∂2

∂z2
+ k2

)[
H

(1)
0 (kmρ) ei(2π/h)mz

]

= C
∞∑

m=−∞

B0
m

[
−
(

2πm

h

)2

+ k2

]
H

(1)
0 (kmρ) ei(2π/h)mz

= C

∞∑

m=−∞

B0
mk

2
mH

(1)
0 (kmρ) ei(2π/h)mz . (4.53)

But the same field is also given by the Floquet mode expansion (4.33). Hence, equating
(4.33) with (4.53), we see that the coefficients Bm in (4.33) are equal to

Bm = CB0
mk

2
m =

b0
k2

iπ

kh

[
k2 −

(
2πm

h

)2
]

=
iπb0
kh

[
1 −

(
2πm

kh

)2
]

(4.54)

identical with the expression (4.43) obtained by the very different procedure in (4.37)-(4.42)
of equating coefficients of a logarithmic singularity. While the second procedure for obtaining
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the coefficients of the Floquet mode expansion is considerably more elegant than the first,
it is very useful for checking purposes to have two independent methods at our disposal.

It remains to consider the self-column sum in (4.15)

4
∞∑

m=1

eikhm

m

−i

m

(
kh+

i

m

)
. (4.55)

The sum is readily evaluated using the summation formulas (D.7) and (D.8). We then obtain

4
∞∑

m=1

eikhm

m

−i

m

(
kh +

i

m

)
= 4 kh Cl2(kh) + 4 Cl3(kh) + iπ(kh)2 − i

2

3
(kh)3 (4.56)

for 0 < kh < 2π, where the Clausen functions Cl2 and Cl3 are defined and approximated by
equations (D.8).

Similarly to what we have done in our treatments of acoustic monopole arrays, it is useful
for calculation purposes to write the kd–βd equation (4.15) in the form

(kh)3 = S{< + i=} (4.57)

where, from (4.45) and (4.56), <, the real part of the expression within the brackets of
(4.15) with the original summations replaced by the rapidly convergent expressions we have
derived, is given by

< = −2π(kh)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8

∞∑

n=1

cos(nβd)

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+ 4(kh) Cl2(kh) + 4 Cl3(kh) (4.58)

and =, the imaginary part of the expression within the brackets of (4.15), is given by

= = 2π(kh)2
∞∑

n=1

cos(nβd)J0(nkd) + π(kh)2 − 2

3
(kh)3 = −2

3
(kh)3 (4.59)

using (B.1a). If we write the scattering coefficient S as

S = |S|eiψ (4.60)

and equate imaginary parts in (4.57) we obtain the relation

|S| =
3

2
sinψ . (4.61)

This relation was derived in [4] using reciprocity and power conservation relations, and
has here been shown here to also be a necessary condition for a 2D array of lossless short
electric dipoles to support a traveling wave. The derivation of (4.61) thus serves as an
important check on our analysis. It is worth noting that if βd < kd then, from (B.1b),
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∑
cos(nβd)J0(nkd) 6= −1/2 and hence = 6= −2/3(kh)3 so that (4.61) would not hold. This

is not possible for an array of short lossless dipole scatterers. Hence βd > kd. This is a
particular instance of the general result (1.4) noted in the Introduction which holds for 2D
arrays as well as for linear arrays. Substituting (4.60) in (4.57) and equating real parts we
obtain the form of the kd–βd equation that is used to calculate βd as a function of kh, d/h,
and the phase ψ of the scattering coefficient

2

3
(kh)3 cosψ −< sinψ = 0 (4.62)

with < given by (4.58), (B.2) used to evaluate the Neumann function sum, the modified
Bessel function sum truncated in accordance with the remark following (4.47), and kh < 2π.
It is easy to solve (4.62) numerically for βd using, for example, a simple search procedure
with secant algorithm refinement.

The expression for < given in (4.58) is valid for kh < 2π. Since for m = 1,

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
is singular as kh approaches 2π, the equation cannot be

used as is to calculate < at kh = 2π. However, referring to (2.57) we see that when m = 1

− 8
∞∑

n=1

cos(nβd)
[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)
kh→2π→ 0 (4.63)

so that

< kh→2π∼ −2π(2π)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8(2π)2

∞∑

n=1

cos(nβd)
∞∑

m=2

(m2 − 1)K0

(
2πn(d/h)

√
m2 − 1

)
+ 4(1.20205...) (4.64)

using (D.9) and (D.10).

4.2 ELECTRIC DIPOLES PERPENDICULAR TO THE ARRAY

PLANE

As in 4.1 the x axis of a Cartesian coordinate system is taken to be the array axis, with the
dipoles oriented in the z direction. Here, however, the dipoles are centered at y = mh,m =
0,±1,±2, · · · , so that the dipoles are perpendicular to the xy plane, the plane of the array.
We assume an excitation of the array with the electric field parallel to the z axis and such
that all the dipoles in any row of the array are excited identically. Let E0

0 be the electric
field incident on the electric dipole at the location x = 0, y = 0, z = 0 from all the other
dipoles in the array. As will be seen shortly, this field has a z component only. Let E0mn

0

be the electric field incident on the reference dipole from the electric dipole at the location
(y, x) = (mh,nd) so that

E0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

E0mn
0 +

∞∑

m=−∞
m 6=0

E0m0
0 . (4.65)
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From [4, eq. (40)]

E0mn
0 = bn

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
cos θmn0 r̂mn0

−
(

1 +
i

krmn0
− 1

(krmn0)2

)
sin θmn0 θ̂mn0

]
. (4.66)

The quantities in (4.66) are defined with reference to a local spherical polar coordinate sys-
tem with origin at (z, y, x) = (0,mh, nd) (in turn defined with reference to a local Cartesian
coordinate system with the same origin whose axes are parallel to those of the global Carte-
sian coordinate system). The distance from the (m,n) dipole to the (0, 0) dipole, rmn0, is
given by

rmn0 =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 (4.67)

and the unit vector in the direction from the (m,n) dipole to the (0, 0) dipole, r̂mn0, is

r̂mn0 = rmn0/rmn0, rmn0 = −mh ŷ − nd x̂ (4.68)

so that
cos θmn0 = r̂mn0 · ẑ = 0 (4.69)

sin θmn0 = 1 (4.70)

and
θ̂mn0 = − sin θmn0 ẑ = −ẑ. (4.71)

The coefficients bn are related to the z component of the electric field incident on any dipole
in the nth row by the scattering equation (4.8). Substituting (4.69)-(4.71) in (4.66) we see
that E0mn

0 has a z component only, and from (4.65) we then obtain

E0
0z =

∞∑

n=−∞
n6=0

bn

∞∑

m=−∞

eikrmn0

krmn0

(
1 +

i

krmn0
− 1

(krmn0)2

)

+ 2b0

∞∑

m=1

eikrm00

krm00

(
1 +

i

krm00
− 1

(krm00)2

)
(4.72)

where rmn0 is given by (4.67) and
rm00 = mh . (4.73)

We now assume that the array is excited by a traveling wave in the x direction with real
propagation constant β. Then the constants bn in (4.72) are identical apart from a phase
shift given by

bn = b0 einβd (4.74)

and

E0
0z = b0

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikrmn0

krmn0

(
1 +

i

krmn0
− 1

(krmn0)2

)
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+ 2b0

∞∑

m=1

eikrm00

krm00

i

krm00

(
1 +

i

krm00
− 1

(krm00)2

)
. (4.75)

Since from (4.8)
b0 = SE0

0z (4.76)

it follows by substituting (4.76) in (4.75) and multiplying by (kh)3 that

(kh)3 = S

{ ∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)

+ 2

∞∑

m=1

eikhρm0

ρm0

(
(kh)2 +

ikh

ρm0
− 1

ρ2
m0

)}
(4.77)

where we have let

ρmn =

√
m2 + (nd/h)2 (4.78)

so that
ρm0 = m . (4.79)

Equation (4.77) is the kd–βd equation that determines the normalized traveling wave prop-
agation constant βd in terms of kh, d/h, and the normalized electric dipole scattering coef-
ficient S.

To convert the slowly convergent summation

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(4.80)

in (4.77) to a rapidly convergent form, we write this sum as

(kh)2

∞∑

m=−∞

eikhρmn

ρmn
+

∞∑

m=−∞

eikhρmn
(

ikh

ρ2
mn

− 1

ρ3
mn

)
(4.81)

and proceed to evaluate these two sums using the Poisson summation formula. The first of
these sums is equal to (kh)2I(n) where I(n) is given by (2.11) in Section 2 dealing with 2D
arrays of acoustic monopoles. From (2.16) we then have

(kh)2

∞∑

m=−∞

eikhρmn

ρmn
= iπ(kh)2H

(1)
0 (|n|kd) + 4(kh)2

∞∑

m=1

K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
.

(4.82)
The second sum in (4.81)

∞∑

m=−∞

eikhρmn
(

ikh

ρ2
mn

− 1

ρ3
mn

)
(4.83)

can be written as

ikh
∞∑

m=−∞

eikh
√
m2 + (nd/h)2

(
1

m2 + (nd/h)2
+

1

(−ikh)[m2 + (nd/h)2]3/2

)
. (4.84)
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The sum over m can be treated with the Poisson summation formula (2.9) and (2.10) with

f(x) = eikh
√
x2 + (nd/h)2

(
1√

x2 + (nd/h)2
+

1

(−ikh)[x2 + (nd/h)2]3/2

)
. (4.85)

Since f(x) is an even function of x,

f̂ (m) = 2

∞∫

0

f(x) cos 2πmx dx . (4.86)

We can evaluate the cosine transform using the formula [18, eq. 3.914(4)]

∞∫

0

(
1

β(x2 + γ2)3/2
+

1

x2 + γ2

)
e−β

√
x2 + γ2

cos bx dx =
1

βγ

√
β2 + b2 K1

(
γ
√
β2 + b2

)

(4.87)
with β = −ikh, γ = |n|d/h, and b = 2πm so that

f̂(m) = 2

∞∫

0

eikh
√
x2 + (nd/h)2

(
1

x2 + (nd/h)2
+

1

(−ikh)[x2 + (nd/h)2]3/2

)
cos 2πmx dx

=
2i

kh(|n|d/h)
√

(2πm)2 − (kh)2 K1

(
(|n|(d/h))

√
(2πm)2 − (kh)2

)
. (4.88)

Hence

∞∑

m=−∞

eikh
√
m2 + (nd/h)2

(
1

m2 + (nd/h)2
+

1

(−ikh)[m2 + (nd/h)2]3/2

)

=
2i

kh(|n|d/h)

∞∑

m=−∞

√
(2πm)2 − (kh)2 K1

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

= − π

(|n|d/h)H
(1)
1 (|n|kd) +

4i

|n|kd

∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

= − π

2
kh
[
H

(1)
0 (|n|kd) +H

(1)
2 (|n|kd)

]

+
2i

kh

∞∑

m=1

[
(2πm)2 − (kh)2

] [
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
−K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]

(4.89)
where we have used the Bessel function relationships (C.2)-(C.9) and assumed that 0 < kh <
2π. Combining (4.80)-(4.84) and (4.89) we have shown that

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
=

iπ(kh)2

2

[
H

(1)
0 (|n|kd) −H

(1)
2 (|n|kd)

]
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+ 2

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
. (4.90)

[An alternate derivation of (4.90) using the Floquet mode expansion method is given in
(4.107)-(4.127).] Then in (4.77)

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)

= 2
∞∑

n=1

cos(nβd)

(
iπ(kh)2

2

[
H

(1)
0 (nkd) −H

(1)
2 (nkd)

]

+ 2
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

)])
. (4.91)

In (4.91) the slowly convergent Schlömilch series

∞∑

n=1

cos(nβd)H
(1)
0 (nkd) (4.92)

can be efficiently evaluated using (B.1) and (B.2), and the slowly convergent Schlömilch
series

∞∑

n=1

cos(nβd)H
(1)
2 (nkd) (4.93)

can be efficiently evaluated using (B.8)-(B.10). The series with the modified Bessel functions
K0 and K2 converge very rapidly because of the exponential decay of these functions.

It remains to consider the self-column sum in (4.77)

2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)
. (4.94)

For 0 < kh < 2π the sum is readily evaluated using the summation formulas (D.13) and the
approximations (D.8). We then obtain

2

∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)

= − 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
+ i

[
π

2
(kh)2 − 2

3
(kh)3

]
(4.95)
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for 0 < kh < 2π. The Clausen functions Cl2 and Cl3 in (4.95) are defined and approximated
by equations (D.8). Substituting (4.90) and (4.95) in the kd − βd equation (4.77) we can
then write the kd− βd equation in the form

(kh)3 = S{< + i=} (4.96)

where <, the real part of the quantity within the brackets of (4.77) with the original sum-
mations replaced by the rapidly convergent expressions we have derived, is given by

< = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
(4.97)

and =, the imaginary part of the quantity within the brackets of (4.77), is given by

= = π(kh)2

[
∞∑

n=1

cos(nβd)J0(nkd) −
∞∑

n=1

cos(nβd)J2(nkd)

]
+
π

2
(kh)2 − 2

3
(kh)3 . (4.98)

In the expression (4.97) for <, the sum
∑

cos(nβd)Y0(nkd) can be evaluated using (B.2).
The sum

∑
cos(nβd)Y2(nkd) can be evaluated very efficiently by using (B.9) and (B.10).

The K0 and K2 series in (4.97) converge extremely rapidly because of the exponential decay
of K0(z) and K2(z).

In the expression (4.98) for =, the sum
∑

cos(nβd)J0(nkd) = -1/2 [see (B.1)] and the
sum

∑
cos(nβd)J2(nkd) = 0 [see (B.8a)]. Hence

= = −2

3
(kh)3 (4.99)

which, together with (4.96), has been shown in Subsection 4.1 [see (4.59)-(4.61)] to imply
that

|S| =
3

2
sinψ (4.100)

where ψ is the phase of the scattering coefficient S, a relationship derived independently in
[4] from reciprocity and power conservation principles, and thereby serving as an important
check here. It is worth noting that if βd < kd then, from (B.1b),

∑
cos(nβd)J0(nkd) 6= −1/2

and from (B.8b),
∑

cos(nβd)J2(nkd) 6= 0 and hence = 6= −2/3(kh)3 so that (4.99) would
not hold. This is not possible for an array of short lossless dipole scatterers. Hence βd > kd.
This is a particular instance of the general result (1.4) noted in the Introduction which holds
for 2D arrays as well as for linear arrays. The kd–βd equation (4.96) for traveling waves

41



supported by 2D arrays of short electric dipoles perpendicular to the array axis and to the
array plane then becomes

2

3
(kh)3 cosψ −< sinψ = 0 (4.101)

with < given by (4.97) and kh < 2π. Equation (4.101) can be easily solved numerically for
βd given values of kd, kh, and ψ, using, for example, a simple search procedure with secant
algorithm refinement.

Since some of the terms of (4.97) become singular as kh approaches 2π the equation
cannot be used to calculate < at kh = 2π. It is therefore worthwhile to obtain the limit of
< given by (4.97) as kh→ 2π from below. From (2.57)

4
∞∑

n=1

cos(nβd)
[
(2π)2 + (kh)2

]
K0

(
n(d/h)

√
(2π)2 − (kh)2

)

kh→2π∼ (2π)2

(
4γ + 4 ln

1√
4π

d

h
+

4π

βd

)
+ (2π)2 2 ln ε

+ (2π)2(4π)

[
∞∑

l=1

(
1

(2lπ − βd)2
− 1

2lπ

)
+

∞∑

l=1

(
1

(2lπ + βd)2
− 1

2lπ

)]
(4.102)

where γ is the Euler constant and ε = 2π − kh, 0 < ε << 1. From (2.58) we see that the
logarithmic singularity is exactly canceled by the logarithmic singularity of

− 2(kh)2 ln

[
2 sin

(
kh

2

)]
(4.103)

at kh = 2π. Also as kh→ 2π, for m = 1

[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

)
kh→2π∼ 2

[
(2π)2 − (kh)2

] 1

(nd/h)2 [(2π)2 − (kh)2]

=
2

(nd/h)2
(4.104)

using the small argument form of the modified Bessel function K2, (C.6), so that

− 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

)

kh→2π→ − 8

(d/h)2

[
π2

6
− πβd

2
+

(βd)2

4

]
(4.105)

where we have made use of the summation formula (D.13c). Hence as kh→ 2π

< kh→2π→ −π(2π)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4(2π)2

∞∑

n=1

cos(nβd)
∞∑

m=2

[
(m2 + 1)K0

(
2πn(d/h)

√
m2 − 1

)
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− (m2 − 1)K2

(
2πn(d/h)

√
m2 − 1

)]
+ (2π)2

(
4γ + 4 ln

1√
4π

d

h
+

4π

βd

)

+ (2π)2(4π)

[ ∞∑

l=1

(
1

(2lπ − βd)2
− 1

2lπ

)
+

∞∑

l=1

(
1

(2lπ + βd)2
− 1

2lπ

)]

− 8

(d/h)2

[
π2

6
− πβd

2
+

(βd)2

4

]
− 2 Cl3(2π) (4.106)

where we have set Cl2(2π) = 0 [see (D.9)] and Cl3(2π) is given by (D.10).
We close this subsection by giving an alternate derivation of (4.90) using the Floquet

mode expansion method, proceeding similarly to how it was used in 4.1. We begin by letting
E0
z (y, z, x) be the z component of the electric field radiated by all the electric dipoles in the

n = 0 row (x = 0, z = 0) at a general point in space (y, z, x),
√
z2 + x2 > 0. Note that

the field is not radially symmetric the way it was in 4.1 where the dipoles were in the array
plane. However, for conciseness whenever a quantity is a function of ρ =

√
z2 + x2, we will

replace the two coordinates z and x by ρ. We establish a local spherical polar coordinate
system with origin at the dipole located at (y, z, x) = (mh, 0, 0) and with θ(m, y, z, x) the
polar angle from the z axis to the vector r(m, y, z, x) = (y−mh) ŷ+x x̂+z ẑ from (mh, 0, 0)
to a field point (y, z, x). The distance r(m, y, ρ) from (mh, 0, 0) to (y, z, x) is given by

r(m, y, ρ) =
√

(y −mh)2 + ρ2 (4.107)

cos θ(m, y, z, x) =
r(m, y, z, x)

r(m, y, ρ)
· ẑ =

z

r(m, y, ρ)
(4.108)

sin θ(m, y, z, x) =
√

1 − cos2 θ(m, y, z, x) =

√
(y −mh)2 + x2

r2(m, y, ρ)
(4.109)

[cos θ(m, y, z, x) r̂(m, y, z, x)]z = cos2 θ(m, y, z, x) =
z2

r2(m, y, ρ)
(4.110)

and

[
sin θ(m, y, z, x θ̂(m, y, z, x)

]
z

= − sin2 θ(m, y, z, x) = −(y −mh)2 + x2

r2(m, y, ρ)
. (4.111)

Then, referring to (4.2)

E0
z (y, z, x) = b0

∞∑

m=−∞

eikr(m, y, ρ)

kr(m, y, ρ)

[
−2i

kr(m, y, ρ)

(
1 +

i

kr(m, y, ρ)

)
z2

r2(m, y, ρ)

+

(
1 +

i

kr(m, y, ρ)
− 1

(kr(m, y, ρ))2

)
(y −mh)2 + x2

r2(m, y, ρ)

]
, ρ > 0 . (4.112)

For ρ = |n|d

E0
z (0, z, x) = b0

∞∑

m=−∞

eikr(m, 0, |n|d)

kr(m, 0, |n|d)

[
−2i

kr(m, 0, |n|d)

(
1 +

i

kr(m, 0, |n|d)

)
z2

r2(m, 0, |n|d)
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+

(
1 +

i

kr(m, 0, |n|d) − 1

(kr(m, 0, |n|d))2

)
(mh)2 + x2

r2(m, 0, |n|d)

]
(4.113)

with
r(m, 0, |n|d) =

√
(mh)2 + (nd)2 . (4.114)

Since
r(m, 0, |n|d) = hρmn (4.115)

with
ρmn =

√
m2 + (nd/h)2 (4.116)

E0
z (0, z, x) = b0

∞∑

m=−∞

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
z2

h2ρ2
mn

+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
m2 + (nd/h)2

ρ2
mn

]
. (4.117)

and

E0
z (0, 0, |n|d) = b0

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
. (4.118)

Hence in (4.77)

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
=

(kh)3

b0
E0
z (0, 0, |n|d) . (4.119)

We proceed to find an expression for E0
z (0, z, x) from which we can then obtain E0

z (0, 0, |n|d).
The electric field radiated by a small z directed electric dipole at the origin of a Cartesian

coordinate system is given by (4.50) which we repeat here

C

(
∂2

∂z2
+ k2

)
eikr

kr
(4.120)

with

C =
b0
k2

. (4.121)

Now from (2.34) and (2.42) the field radiated by the acoustic monopoles located in the row

x = 0, z = 0 at y = 0, ±h, ±2h, · · · , each of which radiates a field equal to eikr/(kr) is
(allowing for the different choice of coordinate axes in this section as compared with Section
2)

∞∑

m=−∞

B0
mH

(1)
0 (kmρ) ei(2π/h)my, km =

√
k2 − (2πm/h)2 (4.122)

where ρ =
√
x2 + z2, km is positive real or positive imaginary, and

B0
m =

iπ

kh
. (4.123)
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Hence the z component of the electric field radiated by a periodic linear array of z directed
electric dipoles on the y axis (x = 0) is equal to

C
∞∑

m=−∞

B0
m

(
∂2

∂z2
+ k2

)
H

(1)
0 (km

√
x2 + z2) ei(2π/h)my . (4.124)

Performing the differentiation we obtain

E0
z (y, z, x) = CB0

m

∞∑

m=−∞

[(
k2 − k2

m

2

z2 + x2

x2 + z2

)
H

(1)
0 (km

√
x2 + z2)

+
k2
m

2

z2 − x2

x2 + z2
H

(1)
2 (km

√
x2 + z2)

]
ei(2π/h)my (4.125)

so that

E0
z (0, 0, |n|d) = CB0

m

∞∑

m=−∞

[(
k2 − k2

m

2

)
H

(1)
0 (km|n|d) −

k2
m

2
H

(1)
2 (km|n|d)

]

=
1

2

CB0
m

h2

∞∑

m=−∞

[
[
(kh)2 + (2πm)2

]
H

(1)
0

(
|n|(d/h)

√
(kh)2 − (2πm)2

)

−
[
(kh)2 − (2πm)2

]
H

(1)
2

(
|n|(d/h)

√
(kh)2 − (2πm)2

)]

=
1

2

iπb0
(kh)3

(kh)2
[
H

(1)
0 (|n|kd) −H

(1)
2 (|n|kd)

]

+
2b0

(kh)3

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
(4.126)

where we have made use of the Bessel function relations (C.1) and (C.3). But then, referring
to (4.119),

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
=

(kh)3

b0
E0
z (0, 0, |n|d)

=
iπ(kh)2

2

[
H

(1)
0 (|n|kd) −H

(1)
2 (|n|kd)

]

+ 2

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
(4.127)

in agreement with (4.90), obtained using the Poisson summation formula.
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5 3D ELECTRIC DIPOLE ARRAYS, DIPOLES ORI-

ENTED PERPENDICULAR TO THE ARRAY AXIS

In this section we consider traveling waves supported by 3D periodic arrays of short lossless
electric dipoles oriented perpendicular to the array axis. We follow the same major steps of
the procedure — calculating the field at a reference element due to all the other elements
in the array, deriving the kd–βd equation by assuming a traveling wave excitation of the
array, and converting slowly convergent summations to rapidly convergent ones to obtain a
form of the kd–βd equation suitable for calculation purposes — used in treating 2D periodic
arrays of lossless electric dipoles in Section 4. As in Subsection 4.1, the Poisson summation
formula method cannot be used to convert the slowly convergent summations we encounter
to rapidly convergent forms because expressions for the necessary integrals are not available.
We can, however, accomplish this with the same two forms of the Floquet mode method,
one based on the asymptotic analysis of an integral and the other based on the Hertz vector
potential, that we used in Subsection 4.1.

As in Section 4 it is again more convenient to take the x axis, rather than the z axis, of
a Cartesian coordinate system to be the array axis, with the electric dipoles oriented in the
z direction because the field of a small electric dipole is expressed most simply in a spherical
polar coordinate system with the z axis aligned with the dipole direction. Equispaced planes
of electric dipoles are located at x = nd, n = 0, ±1, ±2, · · · . In each plane the dipoles
are centered at y = lh, z = mh, l,m = 0, ±1, ±2, · · · . We assume an excitation of the
array with the electric field parallel to the z axis and such that all the dipoles in any plane
of the array are excited identically. Let E0

0 be the electric field incident on the electric dipole
at the location (x, y, z) = (0, 0, 0) from all the other dipoles in the array. As will be seen
[see (5.14)] this field has a z component only. Let E0lmn

0 be the electric field incident on the
reference dipole from the electric dipole at the location (x, y, z) = (nd, lh,mh) so that

E0
0 =

∞∑

n=−∞
n6=0

∞∑

l=−∞

∞∑

m=−∞

E0lmn
0 +

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

E0lm0
0 . (5.1)

From [4, eq. (40)]

E0lmn
0 = bn

eikrlmn0

krlmn0

[
−2i

krlmn0

(
1 +

i

krlmn0

)
cos θlmn0 r̂lmn0

−
(

1 +
i

krlmn0
− 1

(krlmn0)2

)
sin θlmn0 θ̂lmn0

]
. (5.2)

The quantities in (5.2) are defined with reference to a local spherical polar coordinate system
with origin at (x, y, z) = (nd, lh,mh) (in turn defined with reference to a local Cartesian
coordinate system with the same origin whose axes are parallel to those of the global Carte-
sian coordinate system). The distance from the (n, l,m) dipole to the (0, 0, 0) dipole, rlmn0,
is given by

rlmn0 =
√

(lh)2 + (mh)2 + (nd)2 = h
√
l2 +m2 + (nd/h)2 (5.3)
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and the unit vector in the direction from the (n, l,m) dipole to the (0, 0, 0) dipole, r̂lmn0, is

r̂lmn0 = rlmn0/rlmn0, rlmn0 = −nd x̂− lh ŷ −mh ẑ (5.4)

so that

cos θlmn0 = r̂lmn0 · ẑ = − mh

rlmn0
(5.5)

sin θlmn0 =
√

1 − cos2 θlmn0 =

√
(nd)2 + (lh)2

rlmn0
(5.6)

φlmn0 = tan−1

(
r̂lmn0 · ŷ
r̂lmn0 · x̂

)
= tan−1

(
−lh
−nd

)
(5.7)

cosφlmn0 =
−nd√

(nd)2 + (lh)2
(5.8)

sin φlmn0 =
−lh√

(nd)2 + (lh)2
(5.9)

θ̂lmn0 = cos θlmn0 cos φlmn0 x̂ + cos θlmn0 sinφlmn0 ŷ − sin θlmn0 ẑ (5.10)

cos θlmn0 r̂lmn0 =
mh (nd x̂ + lh ŷ +mh ẑ)

r2
lmn0

(5.11)

and

sin θlmn0 θ̂lmn0 =
(mh)(nd) x̂ + (mh)(lh) ŷ − [(nd)2 + (lh)2] ẑ

r2
lmn0

. (5.12)

The corresponding quantities in the self-plane summation of (5.1) are obtained from the
quantities given by (5.3)-(5.12) by setting n = 0. The constants bn are related to the z
component of the electric field incident on any dipole in the nth plane by the scattering
equation [4, eq. (59)]

bn = SE0n
0z (5.13)

where S is the normalized dipole scattering coefficient of a short electric dipole. As in Section
4, “normalized” here means that bn is the coefficient of exp(ikr)/(kr) in the transverse
component of the outgoing electric field in response to the incident field E0n

0z ẑ at the center
of the z directed electric dipole. We note that the x and y components of cos θlmn0 r̂lmn0 and
sin θlmn0 θ̂lmn0 are odd functions of l and m and so vanish when summed from −∞ to ∞
over l and m. The z components, however, are even functions of l and m and so add when
summed from l,m = −∞ to ∞ over a plane. Thus

E0
0 = E0

0zẑ (5.14)

with

E0
0z =

∞∑

n=−∞
n6=0

bn

∞∑

l=−∞

∞∑

m=−∞

eikrlmn0

krlmn0

[
−2i

krlmn0

(
1 +

i

krlmn0

)
(mh)2

r2
lmn0

+

(
1 +

i

krlmn0
− 1

(krlmn0)2

)
(lh)2 + (nd)2

r2
lmn0

]
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+ b0

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

eikrlm00

krlm00

[
−2i

krlm00

(
1 +

i

krlm00

)
(mh)2

r2
lm00

+

(
1 +

i

krlm00
− 1

(krlm00)2

)
(lh)2

r2
lm00

]

(5.15)
where rlmn0 is given by (5.3) and

rlm00 = h
√
l2 +m2 . (5.16)

We now assume that the array is excited by a traveling wave in the x direction with real
propagation constant β. Then the constants bn in (5.15) are identical apart from a phase
shift given by

bn = b0 einβd (5.17)

and

E0
0z = b0

∞∑

n=−∞
n6=0

einβd
∞∑

l=−∞

∞∑

m=−∞

eikrlmn0

krlmn0

[
−2i

krlmn0

(
1 +

i

krlmn0

)
(mh)2

r2
lmn0

+

(
1 +

i

krlmn0
− 1

(krlmn0)2

)
(lh)2 + (nd)2

r2
lmn0

]

+ b0

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

eikrlm00

krlm00

[
−2i

krlm00

(
1 +

i

krlm00

)
(mh)2

r2
lm00

+

(
1 +

i

krlm00
− 1

(krlm00)2

)
(lh)2

r2
lm00

]
.

(5.18)
Since from (5.13)

b0 = SE0
0z (5.19)

it follows by substituting (5.19) in (5.18) and multiplying by (kh)3 that

(kh)3 = S

{
∞∑

n=−∞
n6=0

einβd
∞∑

l=−∞

∞∑

m=−∞

eikhρlmn

ρlmn

[
−2i

ρlmn

(
kh+

i

ρlmn

)
m2

ρ2
lmn

+

(
(kh)2 +

ikh

ρlmn
− 1

ρ2
lmn

)
l2 + (nd/h)2

ρ2
lmn

]

+
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

eikhρlm0

ρlm0

[
−2i

ρlm0

(
kh+

i

ρlm0

)
m2

ρ2
lm0

+

(
(kh)2 +

ikh

ρlm0
− 1

ρ2
lm0

)
l2

ρ2
lm0

]}

(5.20)
where we have let

ρlmn =

√
l2 +m2 + (nd/h)2 (5.21)

with
ρlm0 =

√
l2 +m2 . (5.22)

Equation (5.20) is the kd–βd equation that determines the normalized traveling wave prop-
agation constant βd in terms of kh, d/h, and the normalized electric dipole scattering coef-
ficient S.
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The two-dimensional Poisson summation formula method cannot be used here, the way
it was used in Section 3, to help convert the slowly convergent triple summation in (5.20) to
a rapidly convergent form, because we are unable to calculate the double Fourier transform
of functions like f(x, y) = exp[ikh

√
x2 + y2 + (nd/h)2]/[x2 +y2 +(nd/h)2]2x2, and f(x, y) =

exp[ikh
√
x2 + y2 + (nd/h)2]/[x2 + y2 + (nd/h)2]5/2[(y2 + (nd/h)2]. Accordingly we will use

the Floquet mode method, proceeding similarly to the way we used it in Section 4. We
let E0

z (P ), be the z component of the electric field radiated by all the electric dipoles in
the n = 0 plane at a general point in space P = (x, y, z), x 6= 0. (Note that, because
of symmetry, E0

z (−x, y, z) = E0
z (x, y, z) .) We establish a local spherical polar coordinate

system with origin at the dipole located at (x, y, z) = (0, lh,mh) and with θ(l,m, P ) the
polar angle from the z axis to the vector r(l,m, P ) from (0, lh,mh) to the field point P . The
distance r(l,m, P ) from (0, lh,mh) to P is

r(l,m, P ) =
√
x2 + (y − lh)2 + (z −mh)2 (5.23)

and the unit vector r̂(l,m, P is

r̂(l,m, P ) =
r(l,m, P )

r(l,m, P )
=
x x̂ + (y − lh) ŷ + (z −mh) ẑ

r(l,m, P )
(5.24)

so that

cos θ(l,m, P ) = r̂(l,m, P ) · ẑ =
z −mh

r(l,m, P )
(5.25)

sin θ(l,m, P ) =
√

1 − cos2 θ(l,m, P ) =

√
x2 + (y − lh)2

r(l,m, P )
(5.26)

[cos θ(l,m, P ) r̂(l,m, P )]z = cos2 θ(l,m, P ) =
(z −mh)2

r2(l,m, P )
(5.27)

[
θ̂(l,m, P )

]
z

= − sin θ(l,m, P ) = −
√
x2 + (y − lh)2

r(l,m, P )
(5.28)

[
sin θ(l,m, P ) θ̂(l,m, P )

]
z

= − sin2 θ(l,m, P ) = −x
2 + (y − lh)2

r2(l,m, P )
(5.29)

and hence, referring to (5.2),

E0
z (|x|, y, z) = b0

∞∑

l=−∞

∞∑

m=−∞

eikr(l,m, P )

kr(l,m, P )

[
−2i

kr(l,m, P )

(
1 +

i

kr(l,m, P )

)
(z −mh)2

r2(l,m, P )

+

(
1 +

i

kr(l,m, P )
− 1

(kr(l,m, P ))2

)
x2 + (y − lh)2

r2(l,m, P )

]
. (5.30)

For P = P0 = (|n|d, 0, 0)

E0
z (|n|d, 0, 0) = b0

∞∑

l=−∞

∞∑

m=−∞

eikr(l,m, P0)

kr(l,m, P0)

[
−2i

kr(l,m, P0)

(
1 +

i

kr(l,m, P0)

)
(mh)2

r2(l,m, P0)
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+

(
1 +

i

kr(l,m, P0)
− 1

(kr(l,m, P0))2

)
(nd)2 + (lh)2

r2(l,m, P0)

]
(5.31)

where
r(l,m, P0) =

√
(lh)2 + (mh)2 + (nd)2 . (5.32)

But, referring to (5.21),
r(l,m, P0) = hρlmn (5.33)

and thus

E0
z (|n|d, 0, 0) = b0

∞∑

l=−∞

∞∑

m=−∞

eikhρlmn

khρlmn

[
−2i

khρlmn

(
1 +

i

khρlmn

)
m2

ρ2
lmn

+

(
1 +

i

khρlmn
− 1

(kh)2ρ2
lmn

)
l2 + (nd/h)2

ρ2
lmn

]
. (5.34)

Hence, in (5.20),
∞∑

l=−∞

∞∑

m=−∞

eikhρlmn

ρlmn

[
−2i

ρlmn

(
kh+

i

ρlmn

)
m2

ρ2
lmn

+

(
(kh)2 +

ikh

ρlmn
− 1

ρ2
lmn

)
l2 + (nd/h)2

ρ2
lmn

]
=

(kh)3

b0
E0
z (|n|d, 0, 0) . (5.35)

Now E0
z (|x|, y, z) can be expressed in terms of a plane wave spectrum by

E0
z (|x|, y, z) =

∞∫

−∞

∞∫

−∞

B(ky, kz) ei(kyy + kzz + kx|x|) dkydkz, kx =
√
k2 − k2

y − k2
z (5.36)

where kx is positive real (positive imaginary) according as k2 > (<) k2
y + k2

z . Because of the
periodicity of the array in the y and z directions,

E0
z (|x|, y + h, z) = E0

z (|x|, y, z) , E0
z (|x|, y, z+ h) = E0(|x|, y, z) . (5.37)

It follows from taking the inverse transform of (5.36) inserted into (5.37) that

eikyh = 1 , eikzh = 1 (5.38)

and hence
kyh = 2πl, l = 0,±1,±2, · · · , kzh = 2πm, m = 0,±1,±2, · · · (5.39)

so that

E0
z (|x|, y, z) =

∞∑

l=−∞

∞∑

m=−∞

Blm ei(2π/h)(ly +mz) eiklm|x| (5.40)

where
klm =

√
k2 − (2πl/h)2 − (2πm/h)2 (5.41)
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with klm positive real (positive imaginary) according as (kh)2 > (<) (2π)2(l2 + m2). It
remains to find the unknown Floquet mode expansion coefficients Blm. As in Section 4.1 we
will employ two different methods for obtaining the coefficients, one based on the asymptotic
analysis of an integral, and the other on the Hertz vector potential. We begin with the
integral method.

By inverting (5.40)

Blmeiklm|x| =
1

h2

h/2∫

−h/2

h/2∫

−h/2

E0
z (|x|, y, z)e−i(2π/h)(ly+mz) dydz (5.42)

so that with (5.30)

Blmeiklm|x| =

b0
h2

∞∑

l′=−∞

∞∑

m′=−∞

h/2∫

−h/2

h/2∫

−h/2

eikr(l
′,m′, P )

kr(l′,m′, P )

[
−2i

kr(l′,m′, P )

(
1 +

i

kr(l′,m′, P )

)
(z −m′h)2

r2(l′,m′, P )

+

(
1 +

i

kr(l′,m′, P )
− 1

(kr(l′,m′, P ))2

)
(y − l′h)2 + x2

r2(l′,m′, P )

]
e−i(2π/h)(ly+mz) dydz (5.43)

where
r(l′,m′, P ) =

√
x2 + (y − l′h)2 + (z −m′h)2 . (5.44)

Since Blm is independent of x, if the LHS of (5.43) is expanded for small |x|

Blmeiklm|x| |x|<<1∼ Blm(1 + iklm|x|) . (5.45)

We can then obtain an expression for Blm by investigating the behavior of the RHS of (5.43)
for |x| << 1 and equating coefficients of |x|.

First we show that the terms in the double summation in (5.43) for which (l′,m′) 6= (0, 0)
cannot contribute a term in |x| for |x| << 1. For, letting

A2 = (y − l′h)2 + (z −m′h)2 (5.46)

so that
r(l′,m′, P ) =

√
A2 + x2 (5.47)

and assuming that x2 << A2,

eik
√

(l′h− y)2 + (m′h− z)2 + x2

√
(l′h− y)2 + (m′h− z)2 + x2

=
eik

√
A2 + x2

√
A2 + x2

≈ eikA

A

[
1 +

(
ik

2A
− 1

2A2
x2

)
+ · · ·

]

(5.48)
containing no term in |x|. Also,

2i

kr(l′,m′, P )

(
1 +

i

kr(l′,m′, P )

)
(z −m′h)2

r2(l′,m′, P )
=

2i

k
√
A2 + x2

(
1 +

i

k
√
A2 + x2

)
(z −m′h)2

A2 + x2
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≈ 2i

kA

(
1 − x2

2A2

)[
1 +

i

kA

(
1 − x2

2A2

)]
(z −m′h)2

A2

(
1 − x2

A2

)
(5.49)

containing no term in |x|. Similarly there is no term in |x| in the expansion of

(
1 +

i

kr(l′,m′, P )
− 1

(kr(l′,m′, P ))2

)
(y − l′h)2 + x2

r2(l′,m′, P )
(5.50)

for x2 << A2. Hence a term in |x| in the RHS of (5.43) for |x| << 1 can come only from
the (l′,m′) = (0, 0) term

b0
h2

h/2∫

−h/2

h/2∫

−h/2

eikr(0, 0, P )

kr(0, 0, P )

[
−2i

kr(0, 0, P )

(
1 +

i

kr(0, 0, P )

)
z2

r2(0, 0, P )

+

(
1 +

i

kr(0, 0, P )
− 1

(kr(0, 0, P ))2

)
y2 + x2

r2(0, 0, P )

]
e−i(2π/h)(ly+mz) dydz (5.51)

where
r(0, 0, P ) =

√
x2 + y2 + z2 . (5.52)

In cylindrical polar coordinates ρ =
√
y2 + z2, φ = tan−1(y/z), the (l′,m′) = (0, 0) term is

approximately

b0
kh2

h/2∫

0

2π∫

0

eik
√
ρ2 + x2

√
ρ2 + x2

[
−2i

k
√
ρ2 + x2

(
1 +

i

k
√
ρ2 + x2

)
ρ2 cos2 φ

ρ2 + x2

+

(
1 +

i

k
√
ρ2 + x2

− 1

k2(ρ2 + x2)

)
ρ2 sin2 φ+ x2

ρ2 + x2

]
e−i(2π/h)(l sinφ+m cosφ)ρρ dρ dφ .

(5.53)
We can obtain a term in |x| for |x| << 1 only in the vicinity of ρ = 0. We expand the
trigonometric exponential in (5.53) in a power series in ρ, and note that terms containing
odd powers of sinφ and cos φ integrate to 0 over the interval φ = [0, 2π], to obtain

e−i(2π/h)(l sinφ+m cosφ)ρ ≈ 1 − 1

2
(2π/h)2

(
l2 sin2 φ+m2 cos2 φ

)
ρ2 + · · · . (5.54)

We then substitute (5.54) in (5.53), perform the φ integrations using [18, eq. 3.62(3)],
systematically obtain all the resulting indefinite integrals by making the change of variables

u =
√
ρ2 + x2, du =

ρ dρ√
ρ2 + x2

(5.55)

and using integrals tabulated in [18, eqs. 2.324, 2.325], evaluate the integrals at the lower
range of integration, u = |x|, and collect terms in |x|. (There is no contribution to terms in
|x| from the upper end of the interval of integration u =

√
(h/2)2 + x2.) Terms higher than
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ρ2 in (5.54) are found not to contribute any terms in |x|. When this is done we find that the
RHS of (5.43) behaves as

−2πb0
kh2

[
1 −

(
2πm

kh

)2
]
|x| (5.56)

for |x| << 1. But then, equating coefficients of |x| in (5.45) and (5.56) we obtain the
coefficients of the Floquet mode expansion (5.40)

Blm =
2πib0
kh2klm

[
1 −

(
2πm

kh

)2
]

(5.57)

with klm given by (5.41).
We now give an alternate derivation of the Floquet mode expansion coefficients based on

the Hertz vector potential, following the procedure used in (4.48)-(4.54). The starting point
is the expression (4.48) for the electric field of a small z directed electric dipole at the origin
of a Cartesian coordinate system yielding the expression (4.50) for the z component of the
electric dipole field which we repeat here:

C

(
∂2

∂z2
+ k2

)
eikr

kr
(5.58)

with C = b0/k
2 from (4.49). Now from (3.30) and (3.42) the field radiated by the acous-

tic monopoles located in the plane x = 0 at the locations (y, z) = (lh,mh), l,m =

0, ±h, ±2h, · · · , each of which radiates a field equal to eikr/(kr), is (allowing for the
different choice of coordinate axes in this section as compared with Section 3)

∞∑

l=−∞

∞∑

m=−∞

B0
lm ei(2π/h)(ly +mz) eiklm|x| (5.59)

where

B0
lm =

2πi

kh2klm
(5.60)

and
klm =

√
k2 − (2πl/h)2 − (2πm/h)2 . (5.61)

Hence from (5.58) the z component of the electric field radiated by the plane x = 0 of z
directed electric dipoles is equal to

C

∞∑

l=−∞

∞∑

m=−∞

B0
lm

(
∂2

∂z2
+ k2

)
ei(2π/h)(ly +mz) eiklm|x|

= C
∞∑

l=−∞

∞∑

m=−∞

B0
lm

[
k2 −

(
2πm

h

)2
]

ei(2π/h)(ly +mz) eiklm|x| . (5.62)
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Since the same field is also given by the Floquet mode expansion (5.40), by equating (5.40)
with (5.62) we obtain the coefficients Blm in (5.40)

Blm = CB0
lm

[
k2 −

(
2πm

h

)2
]

=
b0
k2

2πi

kh2klm

[
k2 −

(
2πm

h

)2
]

=
2πib0
kh2klm

[
1 −

(
2πm

kh

)2
]

(5.63)

so that, comparing (5.63) with (5.57), the two methods of obtaining the coefficients of the
Floquet mode expansion yield the same result.

Now, referring to (5.35),(5.40), and (5.57) or (5.63),

∞∑

l=−∞

∞∑

m=−∞

eikhρlmn

ρlmn

[
−2i

ρlmn

(
kh+

i

ρlmn

)
m2

ρ2
lmn

+

(
(kh)2 +

ikh

ρlmn
− 1

ρ2
lmn

)
l2 + (nd/h)2

ρ2
lmn

]

= 2πi
∞∑

l=−∞

∞∑

m=−∞

[
(kh)2 − (2πm)2

] ei|n|(d/h)
√

(kh)2 − (2π)2(l2 +m2)
√

(kh)2 − (2π)2(l2 +m2)

= 2πi kh ei|n|kd − 2π
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−|n|(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

(5.64)
where we have assumed that 0 < kh < 2π. This is a remarkable conversion of a complicated
and very slowly converging summation to a simple and rapidly converging summation. It
follows that in (5.20)

∞∑

n=−∞
n6=0

einβd
∞∑

l=−∞

∞∑

m=−∞

eikhρlmn

ρlmn

[
−2i

ρlmn

(
kh +

i

ρlmn

)
m2

ρ2
lmn

+

(
(kh)2 +

ikh

ρlmn
− 1

ρ2
lmn

)
l2 + (nd/h)2

ρ2
lmn

]

= 4πi kh
∞∑

n=1

cos(nβd) einkd

− 4π
∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

= −2πi kh− 2π kh
sin kd

cos βd− cos kd
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− 4π
∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

(5.65)
where we have made use of (D.5). The sum

∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

(5.66)

converges very rapidly because of the negative exponentials so that only a very few terms are
needed in the sum, for example n from 1 to 2 and l,m from −2 to 2, for sufficient accuracy.

Now we consider the self-plane summation in (5.20)

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

eikhρlm0

ρlm0

[
−2i

ρlm0

(
kh+

i

ρlm0

)
m2

ρ2
lm0

+

(
(kh)2 +

ikh

ρlm0
− 1

ρ2
lm0

)
l2

ρ2
lm0

]
(5.67)

where ρlm0 =
√
l2 +m2. Referring to the kd−βd equation (4.15) in the analysis of traveling

waves on 2D arrays of z directed electric dipoles perpendicular to the array axis and in the
array plane we see that the evaluation of the self-plane summation here is identical to the 2D
problem with n replaced by l, β set equal to 0, and d replaced by h. Accordingly, referring
to (4.45) and (4.56), the self-plane double summation is equal to

2
∞∑

l=1

[
iπ(kh)2H

(1)
0 (lkh) − 4

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)]

+ 4 kh Cl2(kh) + 4 Cl3(kh) + iπ(kh)2 − i
2

3
(kh)3, 0 < kh < 2π (5.68)

with the Clausen functions Cl2 and Cl3 defined and approximated by equations (D.8). In
(5.68) the slowly convergent Schlömilch series

∞∑

l=1

H
(1)
0 (lkh) (5.69)

can be efficiently evaluated using the expressions (B.11) and (B.12). The series

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)

(5.70)

converges extremely rapidly because of the exponential decay of K0. For example, for l = 2,
m = 2, and 0 < kh < 2π, [(2πm)2 − (kh)2]K0(l

√
(2πm)2 − (kh)2) < 1.2 × 10−8. The series

can thus be truncated keeping only a very few terms.
Similarly to what we have done in our treatment of 2D electric dipole arrays in Section

4, it is useful for calculation purposes to write the kd–βd equation (5.20) in the form

(kh)3 = S{< + i=} (5.71)
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where, from (5.64) and (5.68), <, the real part of the expression within the brackets of
(5.20) with the original summations replaced by the rapidly convergent expressions we have
derived, is given by

< = −2π kh
sin kd

cos βd− cos kd

− 4π

∞∑

n=1

cos(nβd)

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

− 2
∞∑

l=1

[
π(kh)2 Y0(lkh) + 4

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)]

+ 4 kh Cl2(kh) + 4 Cl3(kh) (5.72)

with the Clausen functions Cl2 and Cl3 defined and approximated by (D.8), and =, the
imaginary part of the expression within the brackets of (5.20), is given by

= = −2π kh+ 2π(kh)2

∞∑

l=1

J0(lkh) + π(kh)2 − 2

3
(kh)3 = −2

3
(kh)3 (5.73)

using (B.11). As shown in Section 4 [see (4.59)-(4.61)] (5.73), together with (5.71), implies
that the magnitude, |S|, and the phase, ψ, of the scattering coefficient, S, satisfy the relation

|S| =
3

2
sinψ . (5.74)

This relation, as we noted in Section 4, was derived in [4] using reciprocity and power
conservation relations, and has been shown here to also be a necessary condition for a 3D
array of lossless short electric dipoles to support a traveling wave. The derivation of (5.74)
thus serves as an important check on our analysis. Substituting (5.74) in (5.71) and equating
real parts we obtain the form of the kd–βd equation that is used to calculate βd as a function
of kh, d/h, and the phase ψ of the scattering coefficient

2

3
(kh)3 cosψ −< sinψ = 0 (5.75)

with < given by (5.72) and kh < 2π. It is easy to solve (5.75) numerically for βd given
values of kd, kh, and ψ, using, for example, a simple search procedure with secant algo-
rithm refinement. In calculating <, the sum of exponentials is truncated in accordance with
the remark following (5.66), the Neumann function sum is evaluated using (B.12), and the
modified Bessel function sum is truncated in accordance with the remark following (5.70).
Alternately an approximate closed form expression for the sum of exponentials can be ob-
tained by first performing the summation over n from 1 to ∞ in closed form using (D.4) and
then including only terms in the summation over l and m from −1 to 1. When this is done
we obtain

∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2
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≈ 2
(2π)2 − 2(kh)2

√
(2π)2 − (kh)2

e−(d/h)r1 cosβd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1

+ 4
(2π)2 − (kh)2

√
8π2 − (kh)2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2
(5.76)

where r1 =
√

(2π)2 − (kh)2, and r2 =
√

8π2 − (kh)2.
Since some of the terms in (5.72) become singular as kh approaches 2π, this equation

cannot be used to calculate < at kh = 2π. It is therefore worthwhile to obtain the limit of
< given by (5.72) as kh→ 2π from below. Consider first the singularity of

− 4π
∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

.

(5.77)
The two terms of the double summation over l and m for which (l,m) = (±1, 0) are singular
as kh→ 2π, each of these terms behaving as

− (2π)2

√
4πε

(5.78)

for ε = 2π − kh << 1. Since from (D.5)

∞∑

n=1

cos(nβd) = −1

2
(5.79)

−4π
∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

ε→0∼ −4π(2π)
∞∑

n=1

cos(nβd)
∞∑

l=−∞
|l|+|m| >

∞∑

m=−∞
1

(m2 − 1)
e−2πn(d/h)

√
l2 +m2 − 1

√
l2 +m2 − 1

−
√

4π (2π)2

√
ε

. (5.80)

But using the Schlömilch summation formula (B.12) for the sum of the Neumann functions
in (5.72) we have

− 2

∞∑

l=1

π(kh)2 Y0(lkh)
kh→2π∼ (2π)2

[
2γ − 2 + 2 ln

1

2
+ 2

∞∑

l=2

(
1√
l2 − 1

− 1

l

)]
+

2(2π)2
√
π√

ε

(5.81)
where γ is the Euler constant. Thus the 1/

√
ε singularity in (5.81) exactly cancels the

corresponding singularity from the sum of the negative exponentials in (5.80). As we have

seen above [see (4.63)] the singularity of K0

(
l
√

(2πm)2 − (kh)2
)

for m = 1 at kh = 2π
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is eliminated by the multiplicative factor of (2πm)2 − (kh)2 so that < is not singular at
kh = 2π. Its limiting value is given by

lim
kh→2π

< = −(2π)2 sin kd

cos βd− cos kd

− 4π(2π)

∞∑

n=1

cos(nβd)

∞∑

l=−∞
|l|+|m| >

∞∑

m=−∞
1

(m2 − 1)
e−2πn(d/h)

√
l2 +m2 − 1

√
l2 +m2 − 1

+ 2(2π)2

[
γ − 1 + ln

1

2
+

∞∑

l=2

(
1√
l2 − 1

− 1

l

)]

− 8(2π)2

∞∑

m=2

(m2 − 1)K0

(
2πl

√
m2 − 1

)
+ 4 Cl3(2π) (5.82)

where we have set Cl2(2π) = 0 [see (D.9)]. The value of Cl3(2π) is given by (D.10). The
sum of negative exponentials in (5.82) is very small and can be neglected.

In closing this section we note that if the array of dipoles are close together then the array
can be regarded macroscopically as an anisotropic medium with effective or bulk relative
permeability µeff

r = 1 and effective relative permittivity εeffr that determine the propagation
constant of a traveling wave in the direction of the array axis perpendicular to the orientation
of the electric dipoles of the array. The effective relative permeability and permittivity satisfy
the equation

βd

kd
=
√
µeff

r ε
eff
r =

√
εeffr (5.83)

so that

εeffr =

(
βd

kd

)2

(5.84)

where βd is the solution of the kd–βd equation (5.75). For more details the reader is referred
to Subsection 9.2, (9.109), where the effective relative permittivity of the dipole array of this
section of the report is obtained as the special case of the effective relative permittivity of
a 3D array of combined electric and magnetic dipoles perpendicular to the array axis, when
the magnetic dipoles are absent.

6 2D ELECTRIC DIPOLE ARRAYS, DIPOLES ORI-

ENTED PARALLEL TO THE ARRAY AXIS

In this section we consider traveling waves supported by 2D periodic arrays of lossless short
electric dipoles with the dipoles oriented parallel to the array axis rather than perpendicular
to it as in Section 4. We follow the same major steps of the procedure — calculating the
field at a reference element due to all the other elements in the array, deriving the kd–
βd equation by assuming a traveling wave excitation of the array, and converting slowly
convergent summations to rapidly convergent ones to obtain a form of the kd–βd equation
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suitable for calculation purposes — used in treating 2D and 3D periodic arrays of lossless
electric dipoles oriented perpendicular to the array axis in Sections 4 and 5. As in Sections
4.1 and 5 the Floquet mode expansion method will be used to convert slowly convergent
summations to rapidly convergent ones, with two different procedures used to obtain the
Floquet mode expansion coefficients — a procedure based on the asymptotic analysis of an
integral, and a Hertz vector potential procedure.

Although it may appear that it would be more convenient here to choose the array
axis to be the z axis rather than the x axis as in Section 4, the use of the Floquet mode
method to convert the slowly convergent summations of the kd–βd equation to rapidly
convergent ones is simpler if we continue to use the x axis as the array axis, because the
field radiated by a column of dipoles then splits naturally into a term with no φ variation
and a term with cos 2φ variation. Equispaced columns of x directed electric dipoles are
located at x = nd, n = 0, ±1, ±2, · · · . In each column the dipoles are centered at
z = mh, m = 0, ±1, ±2, · · · . We assume an excitation of the array with the electric field
parallel to the x axis and such that all the dipoles in any column of the array are excited
identically. Because of the symmetry of the dipole locations and excitations the electric field
incident on the dipole at the location y = 0, z = 0, x = 0 from all the other dipoles in the
array has an x component only which we denote by E0

0x. Let E0mn
0x be the x component

of the electric field incident on the reference dipole from the electric dipole at the location
(z, x) = (mh,nd) so that

E0
0x =

∞∑

n=−∞
n6=0

∞∑

m=−∞

E0mn
0x +

∞∑

m=−∞
m 6=0

E0m0
0x . (6.1)

We proceed to obtain expressions for E0mn
0x and E0m0

0x . Now the electric field of a short electric
dipole located at the origin of a Cartesian coordinate system with the z axis in the direction
of the dipole is [4, eq. (40)]

E(r) =
eikr

kr

[
−2i

kr

(
1 +

i

kr

)
cos θ r̂ −

(
1 +

i

kr
− 1

(kr)2

)
sin θ θ̂

]
. (6.2)

What we want to do is to obtain an expression for the field of a short electric dipole at the
origin of a Cartesian coordinate system whose x axis is in the direction of the electric dipole.
If we let α be the polar angle measured from the x axis then

E(r) =
eikr

kr

[
−2i

kr

(
1 +

i

kr

)
cosα r̂ −

(
1 +

i

kr
− 1

(kr)2

)
sinα α̂

]
. (6.3)

But [23, sec. 4-6]

α̂ = − 1√
1 − sin2 θ cos2 φ

(cos θ cos φ θ̂ − sinφ φ̂) (6.4)

with
cosα = sin θ cos φ (6.5a)
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and

sinα =

√
1 − sin2 θ cos2 φ (6.5b)

so that in a Cartesian coordinate system with the x axis in the direction of the electric
dipole, the field of a short electric dipole at the origin is

E(r) =
eikr

kr

[
−2i

kr

(
1 +

i

kr

)
sin θ cosφ r̂ +

(
1 +

i

kr
− 1

(kr)2

)(
cos θ cos φ θ̂ − sinφ φ̂

)]

(6.6)
and the x component of the field is

Ex(r) =
eikr

kr

[
−2i

kr

(
1 +

i

kr

)
sin2 θ cos2 φ+

(
1 +

i

kr
− 1

(kr)2

)(
cos2 θ cos2 φ+ sin2 φ

)
]
.

(6.7)
Hence in (6.1)

E0mn
0x = bn

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
sin2 θmn0 cos2 φmn0

+

(
1 +

i

krmn0
− 1

(krmn0)2

)(
cos2 θmn0 cos2 φmn0 + sin2 φmn0

)
]
. (6.8)

The quantities in (6.8) are defined with reference to a local spherical polar coordinate system
with origin at (z, x) = (mh,nd) (in turn defined with reference to a local Cartesian coordi-
nate system with the same origin whose axes are parallel to those of the global Cartesian
coordinate system). The distance from the (m,n) dipole to the (0, 0) dipole, rmn0, is given
by

rmn0 =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 (6.9)

and the unit vector in the direction from the (m,n) dipole to the (0, 0) dipole, r̂mn0, is

r̂mn0 = rmn0/rmn0, rmn0 = −mh ẑ − nd x̂ (6.10)

so that

cos θmn0 = r̂mn0 · ẑ = − mh

rmn0
(6.11)

sin θmn0 =
√

1 − cos2 θmn0 =
|n|d
rmn0

(6.12)

φmn0 = tan−1 r̂mn0 · ŷ
r̂mn0 · x̂

= tan−1 0

−nd
=

{
0 : n < 0
π : n > 0

(6.13)

cos2 φmn0 = 1 (6.14)

and
sin2 φmn0 = 0 . (6.15)
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The constants bn in (6.8) are related to the x component of the electric field incident on any
dipole in the nth column by the scattering equation [4, eq. (59)]

bn = SE0n
0x (6.16)

where S is the normalized dipole scattering coefficient of a short electric dipole. “Normalized”
means that bn is the coefficient of exp(ikr)/(kr) in the transverse component of the outgoing
electric field in response to the incident field E0n

0x x̂ at the center of the x directed electric
dipole. If we let

ρmn =

√
m2 + (nd/h)2 (6.17)

then
rmn0 = hρmn (6.18)

E0mn
0x = bn

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
(nd/h)2

ρ2
mn

+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
m2

ρ2
mn

]

(6.19)
and in the self-column, n = 0,

E0m0
0x = b0

eikh|m|

kh|m|

(
1 +

i

kh|m| −
1

(kh)2m2

)
. (6.20)

Substituting (6.19) and (6.20) in (6.1) we obtain the electric field incident on the dipole at
(z, x) = (0, 0) scattered from all the other dipoles in the array

E0
0x =

∞∑

n=−∞
n6=0

bn

∞∑

m=−∞

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
(nd/h)2

ρ2
mn

+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
m2

ρ2
mn

]
+ b0

∞∑

m=−∞
m 6=0

eikh|m|

kh|m|

(
1 +

i

kh|m| −
1

(kh)2m2

)
. (6.21)

We now assume that the array is excited by a traveling wave in the x direction with real
propagation constant β. Then the constants bn in (6.21) are identical apart from a periodic
phase shift

bn = b0 einβd (6.22)

and

E0
0x = b0

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
(nd/h)2

ρ2
mn

+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
m2

ρ2
mn

]
+ 2b0

∞∑

m=1

eikhm

khm

(
1 +

i

khm
− 1

(kh)2m2

)
. (6.23)

Since from (6.16)
b0 = SE0

0x (6.24)
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it follows by substituting (6.24) in (6.23) and multiplying by (kh)3 that

(kh)3 = S

{
∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
(nd/h)2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
m2

ρ2
mn

]
+ 2

∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)}
. (6.25)

Equation (6.25) is the kd–βd equation that determines the normalized traveling wave prop-
agation constant βd in terms of kh, d/h, and the normalized electric dipole scattering coeffi-
cient S. Although (6.25) could have been obtained considerably more simply had we chosen
the z axis of the global Cartesian coordinate system to be the array axis, the advantage of
choosing the x axis as the array axis is that the Floquet mode procedure to help convert
the very slowly convergent double summation in (6.25) to a rapidly convergent one becomes
more transparent, and makes use of the representation (6.7) of the field of an x-directed
electric dipole.

To begin the Floquet mode procedure we let E0
x(x, y, z) be the x component of the electric

field radiated by all the x directed electric dipoles in the n = 0 column at the general field
point (x, y, z), x 6= 0 and proceed to obtain an expression for E0

x(x, y, z). We establish a local
spherical polar coordinate system with origin at the dipole located at (x, y, z) = (0, 0,mh)
and with θ(m,x, y, z) the polar angle from the z axis to the vector r(m,x, y, z) from (0, 0,mh)
to the field point (x, y, z). The distance r(m,x, y, z) from (0, 0,mh) to (x, y, z) is given by

r(m,x, y, z) =
√
x2 + y2 + (z −mh)2 (6.26)

the unit vector r̂(m,x, y, z) in the direction from the dipole at (0, 0,mh) to the field point is

r̂(m,x, y, z) =
x x̂ + y ŷ + (z −mh) ẑ

r(m,x, y, z)
(6.27)

and the trigonometric functions are given by

cos θ(m,x, y, z) = r̂(m,x, y, z) · ẑ =
z −mh

r(m,x, y, z)
(6.28)

sin θ(m,x, y, z) =
x2 + y2

r(m,x, y, z)
(6.29)

φ(m,x, y, z) = tan−1 r̂(mx, y, z) · ŷ
r̂(mx, y, z) · x̂ = tan−1 y

x
(6.30)

cosφ(m,x, y, z) =
x√

x2 + y2
(6.31)

and
sinφ(m,x, y, z) =

y√
x2 + y2

. (6.32)
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Then, referring to (6.7),

E0
x(x, y, z) = b0

∞∑

m=−∞

eikr(m,x, y, z)

kr(m,x, y, z)

[
−2i

kr(m,x, y, z)

(
1 +

i

kr(m,x, y, z)

)
x2

r2(m,x, y, z)

+

(
1 +

i

kr(m,x, y, z)
− 1

(kr(m,x, y, z))2

)
y2 + (z −mh)2

r2(m,x, y, z)

]
. (6.33)

When x = nd, y = 0, z = 0

r(m,nd, 0, 0) =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 = hρmn (6.34)

[see (6.17)] and in (6.25)

∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
(nd/h)2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
m2

ρ2
mn

]

=
(kh)3

b0
E0
x(|n|d, 0, 0) . (6.35)

In (6.33) let ρ =
√
x2 + y2), x = ρ cos φ, y = ρ sin φ. Then

x2 =
ρ2

2
(1 + cos 2φ) (6.36a)

y2 =
ρ2

2
(1 − cos 2φ) (6.36b)

and

E0
x(ρ, φ, z) = b0

∞∑

m=−∞

eikr(m,ρ, z)

kr(m,ρ, z)

{(
1 +

i

kr(m,ρ, z)
− 1

(kr(m,ρ, z))2

)
(z −mh)2

r2(m,ρ, z)

+

[
−2i

kr(m,ρ, z)

(
1 +

i

kr(m,ρ, z)

)
+

(
1 +

i

kr(m,ρ, z)
− 1

(kr(m,ρ, z))2

)]
ρ2

2r2(m,ρ, z)

+

[
−2i

kr(m,ρ, z)

(
1 +

i

kr(m,ρ, z)

)
−
(

1 +
i

kr(m,ρ, z)
− 1

(kr(m,ρ, z))2

)]
ρ2

2r2(m,ρ, z)
cos 2φ

}

= E0
x1(ρ, z) + E0

x2(ρ, φ, z) (6.37)

where

E0
x1(ρ, z) = b0

∞∑

m=−∞

eikr(m,ρ, z)

kr(m,ρ, z)

{(
1 +

i

kr(m,ρ, z)
− 1

(kr(m,ρ, z))2

)
(z −mh)2

r2(m,ρ, z)

+

[
−2i

kr(m,ρ, z)

(
1 +

i

kr(m,ρ, z)

)
+

(
1 +

i

kr(m,ρ, z)
− 1

(kr(m,ρ, z))2

)]
ρ2

2r2(m,ρ, z)

}

(6.38a)
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and

E0
x2(ρ, φ, z) = b0

∞∑

m=−∞

eikr(m,ρ, z)

kr(m,ρ, z)

[
−2i

kr(m,ρ, z)

(
1 +

i

kr(m,ρ, z)

)

−
(

1 +
i

kr(m,ρ, z)
− 1

(kr(m,ρ, z))2

)]
ρ2

2r2(m,ρ, z)
cos 2φ . (6.38b)

Now E0
x1(ρ, z) and E0

x2(ρ, φ, z) can be expressed in terms of cylindrical waves by [20, sec.
6.6]

E0
x1(ρ, z) =

∞∫

−∞

B1(kz)H
(1)
0 (kρρ)e

ikzzdkz, kρ =
√
k2 − k2

z (6.39a)

and

E0
x2(ρ, z) = cos 2φ

∞∫

−∞

B2(kz)H
(1)
2 (kρρ)e

ikzzdkz, kρ =
√
k2 − k2

z (6.39b)

where H
(1)
0 and H

(1)
2 are the Hankel functions of the first kind of order zero and two, respec-

tively, and kρ is positive real (positive imaginary) according as k2 > (<) k2
z . Because of the

periodicity of E0
x1(ρ, z) and E0

x2(ρ, φ, z) in z with period h, it follows that [see (4.30)-(4.34)]

E0
x1(ρ, z) =

∞∑

m=−∞

B1mH
(1)
0 (kmρ) ei(2π/h)mz (6.40a)

and

E0
x2(ρ, φ, z) = cos 2φ

∞∑

m=−∞

B2mH
(1)
2 (kmρ) ei(2π/h)mz (6.40b)

where
km =

√
k2 − (2πm/h)2 (6.41)

with km positive real (positive imaginary) according as (kh)2 > (<) (2πm)2. By inversion

B1mH
(1)
0 (kmρ) =

1

h

h/2∫

−h/2

E0
x1(ρ, z) e−i(2π/h)mz dz (6.42a)

and

B2m cos 2φ H
(1)
2 (kmρ) =

1

h

h/2∫

−h/2

E0
x2(ρ, φ, z) e−i(2π/h)mz dz . (6.42b)

Then in the RHS of (6.35)

(kh)3

b0
E0
x(|n|d, 0, 0) =

(kh)3

b0

[
∞∑

m=−∞

B1mH
(1)
0 (km|n|d) +

∞∑

m=−∞

B2mH
(1)
2 (km|n|d)

]
. (6.43)
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It remains to obtain expressions for the unknown Floquet mode expansion coefficients B1m

and B2m. As we have done in Sections 4.1 and 5, two independent procedures will be used,
one based on the asymptotic behavior of an integral, and the other based on the Hertz vector
potential, thereby providing an important check on the validity of the expressions obtained.

We begin with the use of the integral method to obtain expressions for B1m. From (6.42a)
and (6.38a)

B1mH
1
0 (kmρ) =

b0
kh

∞∑

m′=−∞

h/2∫

−h/2

eikr(m
′, ρ, z)

r(m′, ρ, z)

{(
1 +

i

kr(m′, ρ, z)
− 1

(kr(m′, ρ, z))2

)
(z −m′h)2

r2(m′, ρ, z)

+

[
−2i

kr(m′, ρ, z)

(
1 +

i

kr(m′, ρ, z)

)
+

(
1 +

i

kr(m′, ρ, z)

− 1

(kr(m′, ρ, z))2

)]
ρ2

2r2(m′, ρ, z)

}
e−i(2π/h)mzdz (6.44)

with
r(m′, ρ, z) =

√
ρ2 + (z −m′h)2 . (6.45)

Since B1m is independent of ρ, for ρ << 1 the LHS of (6.44) behaves as [see (C.4)]

B1mH
(1)
0 (kmρ)

ρ<<1∼ 2i

π
B1m ln ρ . (6.46)

Hence the RHS of (6.44) must also have a ln ρ singularity as ρ → 0. By equating (2i/π)Bm

with the coefficient of the ln ρ singularity of the RHS of (6.44) we can then obtain Bm. In
investigating the singularity of the RHS of (6.44) as ρ → 0 we note that we can ignore all
terms in the summation over m′ for which m′ 6= 0 since these terms are not singular as
ρ→ 0. We must therefore consider the behavior for ρ << 1 of

2b0
kh

h/2∫

0

eikr(0, ρ, z)

r(0, ρ, z)

{(
1 +

i

kr(0, ρ, z)
− 1

(kr(0, ρ, z))2

)
z2

r2(0, ρ, z)
+

[
−2i

kr(0, ρ, z)

(
1 +

i

kr(0, ρ, z)

)

+

(
1 +

i

kr(0, ρ, z)
− 1

(kr(0, ρ, z))2

)]
ρ2

2r2(0, ρ, z)

}
cos(2π/h)mz dz (6.47)

with
r(0, ρ, z) =

√
ρ2 + z2 . (6.48)

Any logarithmic singularity of (6.47) as ρ → 0 must come from the vicinity of z = 0.
To obtain the logarithmic singularity we expand both exp[ikr(0, ρ, z)] and cos(2π/h)mz in
power series in z, systematically obtain all the resulting indefinite integrals using integrals
tabulated in [18, eqs. 2.17, 2.26], evaluate the integrals at the lower end of the range of
integration, z = 0, and collect terms in ln ρ. (There is no contribution to the logarithmic
singularity from the upper end of the interval of integration, z = h/2.) It is found that it is
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necessary to include terms through −[kr(0, z, ρ)]2/2 in the expansion of the exponential and
terms through −(2πm/h)2z2/2 in the expansion of the cosine to include all contributions
to the ln ρ singularity. [Interestingly it is found that there is no contribution to the ln ρ
singularity from

2b0
kh

h/2∫

0

eikr(0, ρ, z)

r(0, ρ, z)

{[
−2i

kr(0, ρ, z)

(
1 +

i

kr(0, ρ, z)

)

+

(
1 +

i

kr(0, ρ, z)
− 1

(kr(0, ρ, z))2

)]
ρ2

2r2(0, ρ, z)

}
cos(2π/h)mz dz (6.49)

in (6.47).] When this is done we find that the RHS of (6.47) behaves as

− b0
kh

[
1 +

(
2πm

kh

)2
]

ln ρ (6.50)

for ρ << 1. But then, equating the coefficient of the ln ρ singularity of the LHS of (6.44)
given by (6.46) with the coefficient of the ln ρ singularity of the RHS of (6.44) given by (6.50)
and solving for B1m we obtain

B1m =
iπ

2

b0
kh

[
1 +

(
2πm

kh

)2
]
. (6.51)

Next we use the integral method to obtain expressions for the Floquet mode expansion
coefficients B2m in (6.42b). From (6.42b) and (6.38b)

B2mH
(1)
2 (kmρ) =

b0
kh

∞∑

m′=−∞

h/2∫

−h/2

eikr(m
′, ρ, z)

kr(m′, ρ, z)

[
−2i

kr(m′, ρ, z)

(
1 +

i

kr(m′, ρ, z)

)

−
(

1 +
i

kr(m′, ρ, z)
− 1

(kr(m′, ρ, z))2

)]
ρ2

2r2(m′, ρ, z)
e−i(2π/h)mz dz . (6.52)

Since B2m is independent of ρ, for ρ << 1 the LHS of (6.52) behaves as [see (C.6)]

B2mH
(1)
2 (kmρ)

ρ<<1∼ −B2m
i

π

1

(kmρ/2)2
. (6.53)

Hence the RHS of (6.52) must also have a 1/ρ2 singularity as ρ → 0. In investigating the
singularity of the RHS of (6.52) as ρ → 0 we can again ignore all terms in the summation
over m′ for which m′ 6= 0 since these terms are not singular as ρ → 0. We must therefore
consider the behavior for ρ << 1 of

2b0
kh

h/2∫

0

eikr(0, ρ, z)

kr(0, ρ, z)

[
−2i

kr(0, ρ, z)

(
1 +

i

kr(0, ρ, z)

)
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−
(

1 +
i

kr(0, ρ, z)
− 1

(kr(0, ρ, z))2

)]
ρ2

2r2(0, ρ, z)
cos(2π/h)mz dz (6.54)

where
r(0, ρ, z) =

√
ρ2 + z2 . (6.55)

To obtain the coefficient of the 1/ρ2 singularity we expand both exp[ikr(0, ρ, z)] and
cos(2π/h)mz in power series in z, systematically integrate all the resulting indefinite in-
tegrals using integrals tabulated in [18, eqs. 2.17, 2.26], evaluate the integrals, and collect
terms in 1/ρ2. It is found that the only contribution to the 1/ρ2 singularity comes from the
leading term in the expansion of both the exponential and cosine. Interestingly the contri-
bution to the 1/ρ2 singularity comes from evaluating the relevant indefinite integral at the
upper end of the interval of integration, z = h/2, and then letting ρ→ 0. The end result is
that the RHS of (6.52) behaves as

2b0
kh

1

(kρ)2
(6.56)

for ρ << 1. But then, equating the coefficients of the 1/ρ2 singularity in the LHS and RHS
of (6.52) given by (6.53) and (6.56), respectively, we obtain

B2m =
iπ

2

b0
kh

[
1 −

(
2πm

kh

)2
]
. (6.57)

We now give an alternate derivation of the Floquet mode expansion coefficients based on
the Hertz vector potential, following the procedure used in (4.48)-(4.54). We begin with the
expression [21, secs. 14-5,14-7] for the electric field of a small x directed electric dipole at
the origin of a Cartesian coordinate system

C ∇ × ∇×

(
eikr

kr
x̂

)
. (6.58)

The value of the proportionality constant C can be found similarly to the way it was found
in Section 4 [see (4.49)] by expanding (6.58) in spherical coordinates (using, for example,
[22, Appendix 1, eqs. 117, 161]) and equating the 1/(kr) term of the φ component with the
corresponding 1/(kr) term of (6.6) with a multiplicative factor of b0 added as in (6.8). We
thus obtain

C =
b0
k2
. (6.59)

Alternately, we can obtain this value of C immediately from (4.49) since it makes no difference
whether we equate two expressions for the field of a z directed electric dipole at the origin
as was done in Section 4, or two expressions for the field of an x directed electric dipole at
the origin as here. From (6.58) the ρ and φ components of the electric field radiated by the
x directed electric dipole are given by the ρ and φ components of

C ∇ × ∇×eikr

kr

(
cos φ ρ̂ − sinφ φ̂

)
, r =

√
ρ2 + z2 . (6.60)
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Using the expression [22, Appendix 1, eq. 101] for ∇ × ∇ in cylindrical coordinates we then
find that the ρ component is given by

− cosφ

(
∂2

∂z2
+

1

ρ

∂

∂ρ

)
eikr

kr
(6.61)

and the φ component is given by

sinφ

(
∂2

∂z2
+

∂2

∂ρ2

)
eikr

kr
. (6.62)

Now from (2.34) and (2.42) the field radiated by the acoustic monopoles located in the
column x = 0, y = 0 at z = 0, ±h, ±2h, · · · , each of which radiates a field equal to

eikr/(kr) is (allowing for the different choice of coordinate axes in this section as compared
with Section 2)

∞∑

m=−∞

B0
mH

(1)
0 (kmρ) ei(2π/h)mz, km =

√
k2 − (2πm/h)2 (6.63)

with

B0
m =

iπ

kh
(6.64)

and km positive real or positive imaginary. Then the ρ component of the electric field radiated
by a column of x directed electric dipoles for which x = 0 is given by

−C cos φ

∞∑

m=−∞

B0
m

[
−
(

2πm

h

)2

H
(1)
0 (kmρ) +

1

ρ

d

dρ
H

(1)
0 (kmρ)

]
ei(2π/h)mz

= −C cos φ
∞∑

m=−∞

B0
m

[
−
(

2πm

h

)2

H
(1)
0 (kmρ) −

k2
m

kmρ
H

(1)
1 (kmρ)

]
ei(2π/h)mz

= −C cosφ
∞∑

m=−∞

B0
m

{
−
(

2πm

h

)2

H
(1)
0 (kmρ) −

k2
m

2

[
H

(1)
0 (kmρ) +H

(1)
2 (kmρ)

]}
ei(2π/h)mz

= −C cos φ
∞∑

m=−∞

B0
m

{[
−
(

2πm

h

)2

− k2
m

2

]
H

(1)
0 (kmρ) −

k2
m

2
H

(1)
2 (kmρ)

}
ei(2π/h)mz

=
1

2
C cos φ

∞∑

m=−∞

B0
m

{[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ) +

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz .

(6.65)
Similarly the φ component of the electric field radiated by a column of x directed electric
dipoles for which x = 0 is given by

C sinφ
∞∑

m=−∞

B0
m

[
−
(

2πm

h

)2

H
(1)
0 (kmρ) +

(kmρ)
2

ρ2

d2

d(kmρ)2
H

(1)
0 (kmρ)

]
ei(2π/h)mz
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= C sinφ

∞∑

m=−∞

B0
m

[
−
(

2πm

h

)2

H
(1)
0 (kmρ) −

kmρ

ρ2

d

d(kmρ)
H

(1)
0 (kmρ)

− (kmρ)
2

ρ2
H

(1)
0 (kmρ)

]
ei(2π/h)mz

= C sin φ
∞∑

m=−∞

B0
m

{[
−
(

2πm

h

)2

− k2
m

]
H

(1)
0 (kmρ) +

k2
m

kmρ
H

(1)
1 (kmρ)

}
ei(2π/h)mz

= C sinφ
∞∑

m=−∞

B0
m

{
−k2H

(1)
0 (kmρ) +

k2
m

2

[
H

(1)
0 (kmρ) +H

(1)
2 (kmρ)

]}
ei(2π/h)mz

= C sinφ
∞∑

m=−∞

B0
m

{[
−k2 +

k2

2
− 1

2

(
2πm

h

)2
]
H

(1)
0 (kmρ)

+
1

2

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz

=
1

2
C sinφ

∞∑

m=−∞

B0
m

{
−
[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ)

+

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz . (6.66)

The first of these equalities is obtained by making use of the differential equation (C.10)

satisfied by H
(1)
0 (z). The x component of the electric field radiated by the column of x

directed electric dipoles for which x = 0 is then given by Eρ cos φ − Eφ cos φ which, from
(6.65) and (6.66), equals

1

2
C cos2 φ

∞∑

m=−∞

B0
m





[
k2 +

(
2πm

h

)2

H(1)

0 (kmρ)

+

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz

= −1

2
C sin2 φ

∞∑

m=−∞

B0
m

{
−
[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ)

+

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz

=
1

2
C

∞∑

m=−∞

B0
m

{[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ)
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+ cos 2φ

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz (6.67)

with C given by (6.59). Since the same field is also given by the sum of the two Floquet
mode expansions (6.40a) and (6.40b), the coefficients B1m and B2m in (6.40) are found by
equating the sum of (6.40a) and (6.40b) with (6.67). Thus

B1m =
1

2

b0
k2
B0
m

[
1 +

(
2πm

kh

)2
]

=
iπ

2

b0
kh

[
1 +

(
2πm

kh

)2
]

(6.68)

in agreement with (6.51) and

B2m =
1

2

b

k2
B0
m

[
1 −

(
2πm

kh

)2
]

=
iπ

2

b

kh

[
1 −

(
2πm

kh

)2
]

(6.69)

in agreement with (6.57).
Now that we have obtained expressions, using two independent methods, for the Floquet

mode expansion coefficients B1m and B2m in (6.43) we can return to the kd–βd equation
(6.25). From (6.35), (6.43), (6.51) or (6.68), and (6.57) or (6.69) we obtain

∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
(nd/h)2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
m2

ρ2
mn

]

=
iπ

2

∞∑

m=−∞

([
(kh)2 + (2πm)2

]
H

(1)
0 (km|n|d) +

[
(kh)2 − (2πm)2

]
H

(2)
2 (km|n|d)

)

=
iπ

2
(kh)2

[
H

(1)
0 (|n|kd) +H

(1)
2 (|n|kd)

]

+ 2
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

+
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
(6.70)

where we have made use of the Bessel function relations (C.1) and (C.3) and assumed that
kh < 2π. Then in (6.25)

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh +

i

ρmn

)
(nd/h)2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
m2

ρ2
mn

]

= 2
∞∑

n=1

cos(nβd)

{
iπ

2
(kh)2

[
H

(1)
0 (|n|kd) +H

(1)
2 (|n|kd)

]
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+ 2

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

+
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]}
. (6.71)

The self-column sum in (6.25)

2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)
. (6.72)

has been evaluated earlier in Section 4. From (4.95)

2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)

= −2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ kh Cl2(kh) + Cl3(kh)

)
+ i

[
π

2
(kh)2 − 2

3
(kh)3

]
(6.73)

for 0 < kh < 2π. Substituting (6.71) and (6.73) in the kd–βd equation (6.25) we can then
write the kd–βd equation in the form

(kh)3 = S {< + i=} (6.74)

where <, the real part of the quantity within the brackets of (6.25) with the original sum-
mations replaced by the new expressions we have derived, is given by

< = −π(kh)2

[ ∞∑

n=1

cos(nβd)Y0(nkd) +

∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

)]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
(6.75)

and =, the imaginary part of the quantity within the brackets of (6.25), is

= = π(kh)2

∞∑

n=1

cos(nβd)J0(nkd) + π(kh)2

∞∑

n=1

cos(nβd)J2(nkd) +
π

2
(kh)2 − 2

3
(kh)3 . (6.76)

In the expression (6.75) for <, the sum
∑

cos(nβd)Y0(nkd) can be evaluated using (B.2),
and the sum

∑
cos(nβd)Y2(nkd) can be evaluated very efficiently by using (B.9)-(B.10). The
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K0 and K2 series in (6.75) converge extremely rapidly because of the exponential decay of
K0(z) and K2(z).

In the expression (6.76) for =,
∑

cos(nβd)J0(nkd) = −1/2 [see (B.1)] and∑
cos(nβd)J2(nkd) = 0 [see (B.8a)]. Hence

= = −2

3
(kh)3 (6.77)

which, together with (6.74), has been shown in Section 4 [see (4.59)-(4.61)] to imply that

|S| =
3

2
sinψ (6.78)

where ψ is the phase of the scattering coefficient S, a relationship derived independently in
[4] from reciprocity and power conservation principles, and thereby serving as an important
check here. It is worth noting that if βd < kd then, from (B.1b),

∑
cos(nβd)J0(nkd) 6= −1/2

and from (B.8b),
∑

cos(nβd)J2(nkd) 6= 0 and hence = 6= −2/3(kh)3 so that (6.78) would
not hold. This is not possible for an array of short lossless dipole scatterers. Hence βd > kd.
This is a particular instance of the general result (1.4) noted in the Introduction which holds
for 2D arrays as well as for linear arrays. The kd–βd equation (6.74) for traveling waves
supported by 2D arrays of short electric dipoles parallel to the array axis then becomes

2

3
(kh)3 cosψ −< sinψ = 0 . (6.79)

with < given by (6.75) and kh < 2π. Equation (6.79) can be easily solved numerically for
βd given values of kd, kh, and ψ, using, for example, a simple search procedure with secant
algorithm refinement.

Since some of the terms of (6.75) become singular as kh approaches 2π this equation
cannot be used to calculate < when kh = 2π. It is therefore worthwhile to obtain the
limit of < given by (6.75) as kh → 2π. Comparing (6.75) with the expression for < given
by (4.97) in Section 4.2 we see that the two expressions are identical apart from two sign
changes. Accordingly the analysis of the limiting behavior of < given in (4.102)-(4.106) is
immediately applicable and making the appropriate two sign changes in (4.106) we obtain

< kh→2π→ −π(2π)2

[
∞∑

n=1

cos(nβd)Y0(nkd) +
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4(2π)2

∞∑

n=1

cos(nβd)
∞∑

m=2

[
(m2 + 1)K0

(
2πn(d/h)

√
m2 − 1

)

+ (m2 − 1)K2

(
2πn(d/h)

√
m2 − 1

)]
+ (2π)2

(
4γ + 4 ln

1√
4π

d

h
+

4π

βd

)

+ (2π)2(4π)

[
∞∑

l=1

(
1

(2lπ − βd)2
− 1

2lπ

)
+

∞∑

l=1

(
1

(2lπ + βd)2
− 1

2lπ

)]

− 8

(d/h)2

[
π2

6
− πβd

2
+

(βd)2

4

]
− 2 Cl3(2π) (6.80)

where the Clausen function Cl3(2π) is given by (D.10).
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7 3D ELECTRIC DIPOLE ARRAYS, DIPOLES ORI-

ENTED PARALLEL TO THE ARRAY AXIS

In this section we consider traveling waves supported by 3D periodic arrays of lossless short
electric dipoles with the dipoles oriented parallel to the array axis, following the same major
steps of the procedure — calculating the field at a reference element due to all the other
elements in the array, deriving the kd–βd equation by assuming a traveling wave excitation
of the array, and converting slowly convergent summations to rapidly convergent ones to
obtain a form of the kd–βd equation suitable for calculation purposes — that we have used
in treating 2D periodic arrays of lossless electric dipoles oriented parallel to the array axis in
Section 6. The Floquet mode expansion method will be used to convert the slowly convergent
summations over the non-self planes to rapidly convergent ones, with two different procedures
used to obtain the Floquet mode expansion coefficients, an integral procedure and a Hertz
vector potential procedure, while the Poisson summation formula will be used to convert the
slowly convergent summation over the self-plane to a rapidly convergent form.

The array axis is chosen to be the z axis rather than the x axis as in Section 6. Equispaced
planes of z directed electric dipoles are located at z = nd, n = 0, ±1, ±2, · · · . In each
plane the dipoles are centered at x = mh, y = lh, m, l = 0, ±1, ±2, · · · . We assume
an excitation of the array with the electric field parallel to the z axis and such that all
the dipoles in any plane of the array are excited identically. Because of the symmetry of
the dipole locations and excitations the electric field incident on the dipole at the location
x = 0, y = 0, z = 0 from all the other dipoles in the array has an z component only which we
denote by E0

0z. Let E0mln
0z be the z component of the electric field incident on the reference

dipole from the electric dipole at the location (x, y, z) = (mh, lh, nd) so that

E0
0z =

∞∑

n=−∞
n6=0

∞∑

m=−∞

∞∑

l=−∞

E0mln
0z +

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

E0ml0
0z . (7.1)

We proceed to obtain expressions for E0mln
0z and E0ml0

0z . Since the electric field of a short
electric dipole located at the origin of a Cartesian coordinate system with the z axis in the
direction of the dipole is [4, eq. (40)]

E(r) =
eikr

kr

[
−2i

kr

(
1 +

i

kr

)
cos θ r̂ −

(
1 +

i

kr
− 1

(kr)2

)
sin θ θ̂

]
(7.2)

it follows that the electric field E0mln
0 incident on the reference dipole from the electric dipole

at the location (x, y, z) = (mh, lh, nd) is

E0mln
0 = bn

eikrmln0

krmln0

[
−2i

krmln0

(
1 +

i

krmln0

)
cos θmln0 r̂mln0

−
(

1 +
i

krmln0
− 1

(krmln0)2

)
sin θmln0 θ̂mln0

]
. (7.3)
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The quantities in (7.3) are defined with reference to a local spherical polar coordinate system
with origin at (x, y, z) = (mh, lh, nd) (in turn defined with reference to a local Cartesian
coordinate system with the same origin whose axes are parallel to those of the global Carte-
sian coordinate system). The distance from the (m, l, n) dipole to the (0, 0, 0) dipole, rmln0,
is given by

rmln0 =
√

(mh)2 + (lh)2 + (nd)2 = h
√
m2 + l2 + (nd/h)2 (7.4)

and the unit vector in the direction from the (m, l, n) dipole to the (0, 0, 0) dipole, r̂mln0, is

r̂mln0 = rmln0/rmln0, rmln0 = −mh x̂ − lh ŷ − nd ẑ (7.5)

so that

cos θmln0 = r̂mln0 · ẑ = − nd

rmln0
(7.6)

sin θmln0 =
√

1 − cos2 θmln0 =

√
(mh)2 + (lh)2

rmln0
(7.7)

φmln0 = tan−1

(
r̂mln0 · ŷ
r̂mln0 · x̂

)
= tan−1

(
−lh
−mh

)
(7.8)

cosφmln0 =
−m√
m2 + l2

(7.9)

sin φmln0 =
−l√
m2 + l2

(7.10)

θ̂mln0 = cos θmln0 cos φmln0 x̂ + cos θmln0 sinφmln0 ŷ − sin θmln0 ẑ (7.11)

cos θmln0 r̂mln0 =
nd (mh x̂ + lh ŷ + nd ẑ)

r2
mln0

(7.12)

and

sin θmln0 θ̂mln0 =
(nd)(mh) x̂ + (nd)(lh) ŷ − [(mh)2 + (lh)2] ẑ

r2
mln0

. (7.13)

The constants bn are related to the z component of the electric field incident on any dipole
in the nth plane by the scattering equation [4, eq. (59)]

bn = SE0n
0z (7.14)

where S is the normalized dipole scattering coefficient of a short electric dipole. “Normalized”
means that bn is the coefficient of exp(ikr)/(kr) in the transverse component of the outgoing
electric field in response to the incident field E0n

0z ẑ at the center of the z directed electric
dipole. When summed over m and l the x̂ and ŷ components of E0mln

0 vanish because they
are odd functions of m and l. Hence for n 6= 0

E0mln
0z = bn

eikrmln0

krmln0

[
−2i

krmln0

(
1 +

i

krmln0

)
(nd)2

r2
mln0

+

(
1 +

i

krmln0
− 1

(krmln0)2

)
(mh)2 + (lh)2

r2
mln0

]
(7.15)
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while for n = 0, the self-plane,

E0ml0
0z = b0

eikrml00

krml00

(
1 +

i

krml00
− 1

(krml00)2

)
(7.16)

where from (7.4)
rml00 = h

√
m2 + l2 . (7.17)

Substituting (7.15) and (7.16) in (7.1) we obtain the expression for the total field incident
on the reference (0, 0, 0) dipole

E0
0z =

∞∑

n=−∞
n6=0

bn

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

[
−2i

khρmln

(
1 +

i

khρmln

)
(nd/h)2

ρ2
mln

+

(
1 +

i

khρmln
− 1

(kh)2ρ2
mln

)
m2 + l2

ρ2
mln

]

+ b0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

khρml0

(
1 +

i

khρml0
− 1

(kh)2ρ2
ml0

)
(7.18)

where we have let

ρmln =

√
m2 + l2 + (nd/h)

2
(7.19a)

so that
ρml0 =

√
m2 + l2 . (7.19b)

We now assume that the array is excited by a traveling wave in the z direction with real
propagation constant β. Then the constants bn in (7.18) are identical apart from a phase
shift given by

bn = b0 einβd . (7.20)

Substituting (7.20) in (7.18), using [from (7.14)] b0 = SE0
0z, and multiplying by (kh)3 we

obtain

(kh)3 = S

{
∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
−2i

ρmln

(
kh +

i

ρmln

)
(nd/h)2

ρ2
mln

+

(
(kh)2 +

ikh

ρmln
− 1

ρ2
mln

)
m2 + l2

ρ2
mln

]

+
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

ρml0

(
(kh)2 +

ikh

ρml0
− 1

ρ2
ml0

)}
. (7.21)

Equation (7.21) is the kd–βd equation that determines the normalized traveling wave prop-
agation constant βd in terms of kh, d/h, and the normalized electric dipole scattering coef-
ficient S.
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We now use the Floquet mode method to help transform the slowly convergent triple
summation in (7.21) to a rapidly convergent form, proceeding similarly to the way we used
it in Section 5. We let E0

z (P ) be the z component of the electric field radiated by all the
electric dipoles in the n = 0 plane at a general point in space P = (x, y, z), z 6= 0. (Note
that, because of symmetry, E0

z (x, y,−z) = E0
z (x, y, z) .) We establish a local spherical

polar coordinate system with origin at the dipole located at (x, y, z) = (mh, lh, 0) and with
θ(m, l, P ) the polar angle from the z axis to the vector r(m, l, P ) from (mh, lh, 0) to the field
point P . The distance r(m, l, P ) from (mh, lh, 0) to P is

r(m, l, P ) =
√

(x−mh)2 + (y − lh)2 + z2 (7.22)

and the unit vector r̂(m, l, P ) is

r̂(m, l, P ) =
r(m, l, P )

r(m, l, P )
=

(x−mh) x̂ + (y − lh) ŷ + z ẑ

r(m, l, P )
(7.23)

so that
cos θ(m, l, P ) = r̂(l,m, P ) · ẑ =

z

r(m, l, P )
(7.24)

sin θ(m, l, P ) =
√

1 − cos2 θ(m, l, P ) =

√
(x−mh)2 + (y − lh)2

r(m, l, P )
(7.25)

[cos θ(m, l, P ) r̂(m, l, P )]z = cos2 θ(m, l, P ) =
z2

r2(m, l, P )
(7.26)

[
θ̂(m, l, P )

]
z

= − sin θ(m, l, P ) = −
√

(x−mh)2 + (y − lh)2

r(m, l, P )
(7.27)

[
sin θ(m, l, P ) θ̂(m, l, P )

]
z

= − sin2 θ(m, l, P ) = −(x−mh)2 + (y − lh)2

r2(m, l, P )
(7.28)

and hence, referring to (7.2),

E0
z (x, y, |z|) = b0

∞∑

m=−∞

∞∑

l=−∞

eikr(m, l, P )

kr(m, l, P )

[
−2i

kr(m, l, P )

(
1 +

i

kr(m, l, P )

)
z2

r2(m, l, P )

+

(
1 +

i

kr(m, l, P )
− 1

(kr(m, l, P ))2

)
(x−mh)2 + (y − lh)2

r2(m, l, P )

]
. (7.29)

For P = P0 = (0, 0, |n|d)

E0
z (0, 0, |n|d) = b0

∞∑

m=−∞

∞∑

l=−∞

eikr(m, l, P0)

kr(m, l, P0)

[
−2i

kr(m, l, P0)

(
1 +

i

kr(m, l, P0)

)
(nd)2

r2(m, l, P0)

+

(
1 +

i

kr(m, l, P0)
− 1

(kr(m, l, P0))2

)
(mh)2 + (lh)2

r2(l,m, P0)

]
(7.30)
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where
r(m, l, P0) =

√
(m2 + l2)h2 + (nd)2 . (7.31)

But, referring to (7.19a),
r(m, l, P0) = hρmln (7.32)

and thus

E0
z (0, 0, |n|d) = b0

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

[
−2i

khρmln

(
1 +

i

khρmln

)
(nd/h)2

ρ2
mln

+

(
1 +

i

khρmln
− 1

(kh)2ρ2
mln

)
m2 + l2

ρ2
mln

]
. (7.33)

Hence, in (7.21),
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
−2i

ρmln

(
kh+

i

ρmln

)
(nd/h)2

ρ2
mln

+

(
(kh)2 +

ikh

ρmln
− 1

ρ2
mln

)
m2 + l2

ρ2
mln

]
=

(kh)3

b
E0
z (0, 0, |n|d) . (7.34)

Now E0
z (x, y, |z|) can be expressed in terms of a plane wave spectrum by

E0
z (x, y, |z|) =

∞∫

−∞

∞∫

−∞

B(kx, ky)e
i(kxx+ kyy + kz|z|) dkxdky, kz =

√
k2 − k2

x − k2
y (7.35)

where kz is positive real (positive imaginary) according as k2 > (<) k2
x + k2

z . Because of the
periodicity of the array in the x and y directions,

E0
z (x+ h, y, |z|) = E0

z (x, y, |z|) , E0
z (x, y + h, |z|) = E0(x, y, |z|) . (7.36)

It follows by taking the inverse Fourier transform of (7.35) and substituting in (7.36) that

eikxh = 1 , eikyh = 1 (7.37)

and hence

kxh = 2πm, m = 0,±1,±2, · · · , kyh = 2πl, l = 0,±1,±2, · · · (7.38)

so that

E0
z (x, y, |z|) =

∞∑

m=−∞

∞∑

l=−∞

Bml e
i(2π/h)(mx+ ly) eikml|z| (7.39)

where
kml =

√
k2 − (2πm/h)2 − (2πl/h)2 (7.40)

with kml positive real (positive imaginary) according as (kh)2 > (<) (2π)2(m2 + l2). It
remains to find the unknown Floquet mode expansion coefficients Bml. As in Section 5 we
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will employ two different methods for obtaining the coefficients, one based on the asymptotic
behavior of an integral, and the other on the Hertz vector potential. We begin with the
integral method.

By inverting (7.39)

Bml eikml|z| =
1

h2

h/2∫

−h/2

h/2∫

−h/2

E0
z (x, y, |z|) e−i(2π/h)(mx+ ly) dxdy (7.41)

so that with (7.29)

Bmle
ikml|z|

=
b0
h2

∞∑

m′=−∞

∞∑

l′=−∞

h/2∫

−h/2

h/2∫

−h/2

eikr(m
′, l′, P )

kr(m′, l′, P )

[
−2i

kr(m′, l′, P )

(
1 +

i

kr(m′, l′, P )

)
z2

r2(m′, l′, P )

+

(
1 +

i

kr(m′, l′, P )
− 1

(kr(m′, l′, P ))2

)
(x−m′h)2 + (y − l′h)2

r2(m′, l′, P )

]
e−i(2π/h)(mx+ ly) dxdy

(7.42)
where

r(m′, l′, P ) =
√

(x−m′h)2 + (y − l′h)2 + z2 . (7.43)

Since Bml is independent of z, if the LHS of (7.42) is expanded for small |z|

Bmle
ikml|z| |z|<<1∼ Bml(1 + ikml|z|) . (7.44)

We can then obtain an expression for Bml by investigating the behavior of the RHS of (7.42)
for |z| << 1 and equating coefficients of |z|.

First we show that the terms in the double summation in (7.42) for which (m′, l′) 6= (0, 0)
cannot contribute a term in |z| for |z| << 1. For, letting

A2 = (x−m′h)2 + (y − l′h)2 (7.45)

so that
r(m′, l′, P ) =

√
A2 + z2 (7.46)

and assuming that z2 << A2,

eik
√

(m′h− x)2 + (l′h− y)2 + z2

√
(m′h− x)2 + (l′h− y)2 + z2

=
eik

√
A2 + z2

√
A2 + z2

≈ eikA

A

[
1 +

(
ik

2A
− 1

2A2
z2

)
+ · · ·

]

(7.47)
containing no term in |z|. Also,

2i

kr(m′, l′, P )

(
1 +

i

kr(m′, l′, P )

)
z2

r2(m′, l′, P )
=

2i

k
√
A2 + z2

(
1 +

i

k
√
A2 + z2

)
z2

A2 + z2

≈ 2i

kA

(
1 − z2

2A2

)[
1 +

i

kA

(
1 − z2

2A2

)]
z2

A2

(
1 − z2

A2

)
(7.48)
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containing no term in |z|. Similarly there is no term in |z| in the expansion of
(

1 +
i

kr(m′, l′, P )
− 1

(kr(m′, l′, P ))2

)
(x−m′h)2 + (y − l′h)2

r2(m′, l′, P )
(7.49)

for z2 << A2. Hence a term in |z| in the RHS of (7.42) for |z| << 1 can come only from the
(m′, l′) = (0, 0) term

b0
h2

h/2∫

−h/2

h/2∫

−h/2

eikr(0, 0, P )

kr(0, 0, P )

[
−2i

kr(0, 0, P )

(
1 +

i

kr(0, 0, P )

)
z2

r2(0, 0, P )

+

(
1 +

i

kr(0, 0, P )
− 1

(kr(0, 0, P ))2

)
x2 + y2

r2(0, 0, P )

]
e−i(2π/h)(mx+ ly) dxdy (7.50)

where
r(0, 0, P ) =

√
x2 + y2 + z2 . (7.51)

In cylindrical polar coordinates ρ =
√
x2 + y2, φ = tan−1(y/x), the (m′, l′) = (0, 0) term is

approximately

b0
kh2

h/2∫

0

2π∫

0

eik
√
ρ2 + z2

√
ρ2 + z2

[
−2i

k
√
ρ2 + z2

(
1 +

i

k
√
ρ2 + z2

)
z2

ρ2 + z2

+

(
1 +

i

k
√
ρ2 + z2

− 1

k2(ρ2 + z2)

)
ρ2

ρ2 + z2

]
e−i(2π/h)(m cosφ+ l sinφ)ρ ρ dρ dφ . (7.52)

We can obtain a term in |z| for |z| << 1 only in the vicinity of ρ = 0. We expand the
trigonometric exponential in (7.52) in a power series in ρ, and note that terms containing
odd powers of cos φ and sinφ integrate to 0 over the interval φ = [0, 2π], to obtain

e−i(2π/h)(m cosφ+ l sin φ)ρ ≈ 1 − 1

2
(2π/h)2

(
m2 cos2 φ+ l2 sin2 φ

)
ρ2 + · · · . (7.53)

We then substitute (7.53) in (7.52), perform the φ integration, systematically integrate all
the resulting indefinite integrals by making the change of variables

u =
√
ρ2 + z2, du =

ρ dρ√
ρ2 + z2

(7.54)

and using integrals tabulated in [18, eqs. 2.324,2.325], evaluate the integrals at the lower
range of integration, u = |z|, and collect terms in |z|. (There is no contribution to terms
in |z| from the upper end of the interval of integration u =

√
(h/2)2 + z2.) It is found

that there is no contribution to terms in |z| from the constant term in the expansion of the
trigonometric exponential in (7.53), nor is there any contribution from terms higher than ρ2

in this expansion. The end result is that the RHS of (7.42) behaves as

−8π3 1

(kh)3

b0
h

(m2 + l2) |z| (7.55)
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for |z| << 1. But then, equating coefficients of |z| in (7.44) and (7.55) we obtain the
coefficients of the Floquet mode expansion (7.39)

Bml = i8π3 b0
(kh)3

m2 + l2√
(kh)2 − (2π)2(m2 + l2)

. (7.56)

We now give an alternate derivation of the Floquet mode expansion coefficients based on
the Hertz vector potential, following the procedure used in (5.58)-(5.63). The starting point
is the expression (4.48) for the electric field of a small z directed electric dipole at the origin
of a Cartesian coordinate system yielding the expression (4.50) for the z component of the
electric dipole field which we repeat here:

C

(
∂2

∂z2
+ k2

)
eikr

kr
(7.57)

with C = b0/k
2 from (4.49). Now from (3.30) and (3.42) the field radiated by the acous-

tic monopoles located in the plane z = 0 at the locations (x, y) = (mh, lh), m, l =

0, ±h, ±2h, · · · , each of which radiates a field equal to eikr/(kr), is

∞∑

m=−∞

∞∑

l=−∞

B0
ml ei(2π/h)(mx+ ly) eikml|z| (7.58)

where

B0
ml =

2πi

kh2kml
(7.59)

and
kml =

√
k2 − (2πm/h)2 − (2πl/h)2 (7.60)

where kml is positive real or positive imaginary. Hence from (7.57) and (7.58) the z compo-
nent of the electric field radiated by the plane z = 0 of z directed electric dipoles is equal
to

C
∞∑

m=−∞

∞∑

l=−∞

B0
ml

(
∂2

∂z2
+ k2

)
ei(2π/h)(mx+ ly) eikml|z|

= C
∞∑

m=−∞

∞∑

l=−∞

B0
ml(k

2 − k2
ml) ei(2π/h)(mx+ ly) eikml|z| . (7.61)

Since the same field is given by the Floquet mode expansion (7.39), by equating (7.39) with
(7.61) we obtain the coefficients Bml

Bml = CB0
ml(k

2−k2
ml) =

b0
k2

2πi

kh2kml
(k2−k2

ml) = i8π3 b0
(kh)3

m2 + l2√
(kh)2 − (2π)2(m2 + l2)

(7.62)

so that, comparing (7.62) with (7.56), we see that the two methods of obtaining the coeffi-
cients of the Floquet mode expansion yield the same result.
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Now, referring to (7.34), (7.39), and (7.56) or (7.62),

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
−2i

ρmln

(
kh+

i

ρmln

)
(nd/h)2

ρ2
mln

+

(
(kh)2 +

ikh

ρmln
− 1

ρ2
mln

)
m2 + l2

ρ2
mln

]

= i8π3
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) ei|n|(d/h)
√

(kh)2 − (2π)2(m2 + l2)
√

(kh)2 − (2π)2(m2 + l2)

= 8π3

∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−|n|(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(7.63)

for 0 < kh < 2π. We have thus effected a rather extraordinary conversion of a very slowly
convergent double summation of a complex quantity to a very rapidly convergent double
summation of a real quantity. It is not at all obvious that the imaginary part of the original
summation in (7.34) is zero. It follows by substituting (7.63) in (7.21) that

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
− 2i

ρmln

(
kh+

i

ρmln

)
(nd/h)2

ρ2
mln

−
(

(kh)2 +
ikh

ρmln
− 1

ρ2
mln

)
m2 + l2

ρ2
mln

]

= 16π3

∞∑

n=1

cos(nβd)
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

. (7.64)

We now turn our attention to the self-plane double sum in the kd–βd equation (7.21)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2

(
(kh)2 +

ikh√
m2 + l2

− 1

m2 + l2

)

= 2
∞∑

l=1

∞∑

m=−∞

eikh
√
m2 + l2

√
m2 + l2

(
(kh)2 +

ikh√
m2 + l2

− 1

m2 + l2

)

+ 2

∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)

= 2(kh)2

∞∑

l=1

∞∑

m=−∞

ei
√
m2 + l2

√
m2 + l2

+ 2ikh
∞∑

l=1

∞∑

m=−∞

eikh
√
m2 + l2

(
1

m2 + l2
+

1

(−ikh)(m2 + l2)3/2

)
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+ 2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)
. (7.65)

We consider each of these three sums in turn. The inner (m) sum of the first double summa-
tion is treated in Section 2 dealing with the 2D acoustic monopole array. From (2.29) and
(2.43) with nd/h replaced by l we obtain

2(kh)2
∞∑

m=−∞

ei
√
m2 + l2

√
m2 + l2

= 2πi(kh)2H
(1)
0 (lkh)+ 8(kh)2

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)

(7.66)

when 0 < kh < 2π. Thus

2(kh)2
∞∑

l=1

∞∑

m=−∞

ei
√
m2 + l2

√
m2 + l2

= 2πi(kh)2
∞∑

l=1

H
(1)
0 (lkh)

+ 8(kh)2
∞∑

l=1

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)
. (7.67)

For the inner (m) sum of the second double summation in (7.65) we refer to (4.89) with l
substituted for |n|d/h to obtain

∞∑

m=−∞

eikh
√
m2 + l2

(
1

m2 + l2
+

1

(−ikh)(m2 + l2)3/2

)

= −π
2
kh
[
H

(1)
0 (lkh) +H

(1)
2 (lkh)

]

+
2i

kh

∞∑

m=1

[
(2πm)2 − (kh)2

] [
K2

(
l
√

(2πm)2 − (kh)2
)
−K0

(
l
√

(2πm)2 − (kh)2
)]

(7.68)

for 0 < kh < 2π. Thus

2ikh
∞∑

l=1

∞∑

m=−∞

eikh
√
m2 + l2

(
1

m2 + l2
+

1

(−ikh)(m2 + l2)3/2

)

= −πi(kh)2

∞∑

l=1

[
H

(1)
0 (lkh) +H

(1)
2 (lkh)

]

−4

∞∑

l=1

∞∑

m=1

[
(2πm)2 − (kh)2

] [
K2

(
l
√

(2πm)2 − (kh)2
)
−K0

(
l
√

(2πm)2 − (kh)2
)]

.

(7.69)
The third sum in (7.65) has been evaluated in Section 4.2, (4.95):

2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)
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= −2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
+ i

[
π

2
(kh)2 − 2

3
(kh)3

]
(7.70)

with the Clausen functions Cl2(kh) and Cl3(kh) defined and approximated in (D.8) and
0 < kh < 2π. Combining (7.67), (7.69), and (7.70), we have shown that the self-plane sum

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikh
√
m2 + l2

√
m2 + l2

(
(kh)2 +

ikh√
m2 + l2

− 1

m2 + l2

)

= πi(kh)2

∞∑

l=1

[
H

(1)
0 (lkh) −H

(1)
2 (lkh)

]

+ 4
∞∑

l=1

∞∑

m=1

(
[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)

− [(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
))

−2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
+ i

[
π

2
(kh)2 − 2

3
(kh)3

]
. (7.71)

Substituting (7.64) and (7.71) in the kd–βd equation (7.21) we can then write the kd–βd
equation in the form

(kh)3 = S {< + i=} (7.72)

where <, the real part of the quantity within the brackets of (7.21) with the original sum-
mations replaced by the new expressions we have derived, is

< = 16π3

∞∑

n=1

cos(nβd)

∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− π(kh)2

[
∞∑

l=1

Y0(lkh) −
∞∑

l=1

Y2(lkh)

]

+ 4
∞∑

l=1

∞∑

m=1

[
[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)

− [(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
)]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
(7.73)

and =, the imaginary part of the quantity within the brackets of (7.21), is

= = π(kh)2

[ ∞∑

l=1

J0(lkh)−
∞∑

l=1

J2(lkh)

]
+
π

2
(kh)2 − 2

3
(kh)3 = −2

3
(kh)3 (7.74)
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using (B.11) and (B.13). As has been noted above in Section 4 [see (4.59)-(4.61)], = =
−2/3(kh)3 together with (7.72) imply that

|S| =
3

2
sinψ (7.75)

where ψ is the phase of the scattering coefficient S, a relationship that the scattering co-
efficient S must satisfy based on reciprocity and power conservation principles, and so the
derivation here of (7.75) serves as a valuable check on the correctness of our analysis. The
kd–βd equation (7.72) for traveling waves supported by 3D arrays of short electric dipoles
parallel to the array axis then becomes

2

3
(kh)3 cosψ −< sinψ = 0 (7.76)

with < given by (7.73) and kh < 2π. Equation (7.76) can be easily solved numerically for
βd given values of kd, kh, and ψ, using, for example, a simple search procedure with secant
algorithm refinement.

To facilitate the calculation of < the following may be noted. The sum

∞∑

n=1

cos(nβd)
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(7.77)

converges very rapidly because of the negative exponential so that it is necessary to include
only a few terms in the sum, for example, n from 1 to 2 and m, l from −2 to 2, for sufficient
accuracy. Alternately an approximation to the sum can be obtained by first performing the
summation over n from 1 to ∞ in closed form using (D.4) and then including only terms in
the summation over m and l from −1 to 1. When this is done we obtain

∞∑

n=1

cos(nβd)
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

≈ 4

(
1

r1

e−(d/h)r1 cos βd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1
+

2

r2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2

)
.

(7.78)
where r1 =

√
(2π)2 − (kh)2, and r2 =

√
8π2 − (kh)2. Accelerated convergence expressions

for the Schlömilch series
∑
Y0(lkh) and Y2(lkh) are given in (B.12) and (B.14), respectively.

The modified Bessel function series

∞∑

l=1

∞∑

m=1

[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)

(7.79a)

and
∞∑

l=1

∞∑

m=1

[(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
)

(7.79b)
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converge extremely rapidly because of the exponential decay of K0 and K1 so that only a
few terms of the series need be included.

The expression for < given by (7.73) is valid for kh < 2π. Because some of the terms of
< are singular as kh→ 2π, (7.73) cannot be used as is at kh = 2π. It is therefore worthwhile
to obtain the limit of < as kh→ 2π from below. Consider first the singularity of

16π3

∞∑

n=1

cos(nβd)

∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(7.80)

as kh → 2π. The four terms of the double summation over m and l for which (m, l) =
(±1, 0), (0,±1) are singular as kh→ 2π, each of these terms behaving as

1√
4πε

(7.81)

for ε = 2π − kh << 1. Using (3.68) it follows that

16π3

∞∑

n=1

cos(nβd)
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

kh→2π∼ 8π2

∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

(m2 + l2)
e−2πn(d/h)

√
m2 + l2 − 1

√
m2 + l2 − 1

− 16π5/2

√
ε

.

(7.82)
The behavior of the Y0(lkh) sum as kh → 2π has been considered above. From (3.70) we
have

−π(kh)2

∞∑

l=1

Y0(lkh)
kh→2π∼ 2π2

[
2γ + 2 ln

1

2
− 2 + 2

∞∑

l=2

(
1√
l2 − 1

− 1

l

)]
+

4π5/2

√
ε

(7.83)

where we have again let kh = 2π − ε. The behavior of the Y2(lkh) sum as kh → 2π can be
easily found from (B.14)-(B.15). As kh→ 0 only the term in the sum of the RHS of (B.14)
for m = 1 becomes singular since

sinh q1 =

√
(2π)2 − (kh)2

kh

ε→0∼
√

4πε

2π
. (7.84)

Thus in (7.73)

π(kh)2

∞∑

l=1

Y2(lkh)
ε→0∼ (2π)2

∞∑

m=2

e−2qm

sinh qm
+ λ2 +

4π5/2

√
ε

(7.85)

where
sinh qm =

√
m2 − 1 (7.86)

and

λ2 =
1

3π
. (7.87)
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Next we consider the singularities of

4

∞∑

l=1

∞∑

m=1

[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)
. (7.88)

From (3.64)

4
∞∑

l=1

∞∑

m=1

[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)

kh→2π∼ 4(2π)2

∞∑

l=1

∞∑

m=2

(m2+1) K0

(
2πl

√
m2 − 1

)
+(2π)2

(
4γ + 4 ln

1√
4π

)
+2(2π)2 ln ε+

8π5/2

√
ε

(7.89)
where γ is the Euler constant and we have let kh = 2π − ε, 0 < ε << 1. Finally consider

−4
∞∑

l=1

∞∑

m=1

[(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
)
. (7.90)

Referring to (4.104)

−4
∞∑

l=1

∞∑

m=1

[(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
)

kh→2π∼ −4(2π)2

∞∑

l=1

∞∑

m=2

(m2 − 1) K2

(
2πl

√
m2 − 1

)
− 4

∞∑

l=1

2

l2

= −4(2π)2

∞∑

l=1

∞∑

m=2

(m2 − 1) K2

(
2πl

√
m2 − 1

)
− 8(1.64493 · · · ) (7.91)

using (D.12). The logarithmic singularity of (7.89 is exactly canceled by the logarithmic
singularity of

− 2(kh)2 ln

[
2 sin

(
kh

2

)]
(7.92)

at kh = 2π [see (2.58)] and the 1/
√
ε singularities of (7.82), (7.83, (7.85), and (7.89) also

cancel. Thus < given by (7.73) is not singular at kh = 2π and

lim
kh→2π

< = 8π2

∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

(m2 + l2)
e−2πn(d/h)

√
m2 + l2 − 1

√
m2 + l2 − 1

+ 2π2

[
2γ + 2 ln

1

2
− 2 + 2

∞∑

l=2

(
1√
l2 − 1

− 1

l

)]
+ (2π)2

∞∑

m=2

e−2qm

sinh qm
+ λ2

+ 4(2π)2
∞∑

l=1

∞∑

m=2

(m2 + 1) K0

(
2πl

√
m2 − 1

)
+ (2π)2

(
4γ + 4 ln

1√
4π

)

86



− 4(2π)2

∞∑

l=1

∞∑

m=2

(m2 − 1) K2

(
2πl

√
m2 − 1

)
− 8(1.64493 · · · ) − 2Cl3(2π) (7.93)

with sinh qm, λ2, and Cl3(2π), given by (7.86) (7.87) and (D.10), respectively. Referring to
(7.78) we see that

8π2

∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

(m2 + l2)
e−2πn(d/h)

√
m2 + l2 − 1

√
m2 + l2 − 1

≈ 32π
e−2πd/h cosβd− e−4πd/h

1 − 2 cos βd e−2πd/h + e−4πd/h
. (7.94)

In closing this section we note that we shall not define for a three-dimensional array
of closely spaced parallel dipoles an effective relative permittivity εeffr (as we did for three-
dimensional arrays of closely spaced perpendicular dipoles) that determine the propagation
constant of the traveling wave. Although such a defined effective permittivity would indeed
determine the propagation constant of the traveling wave, the average polarization within the
array would not be given by P = (εeffr −1)ε0E because the dipoles are oriented parallel to the
direction of propagation and thus perpendicular to the fields in the approximate transverse
electromagnetic (TEM) wave that would be supported by the closely spaced array of parallel
dipoles.

8 2D MAGNETODIELECTRIC SPHERE ARRAYS

In this section we consider traveling waves supported by 2D periodic arrays of lossless mag-
netodielectric spheres. It is assumed that the spheres can be modeled by pairs of crossed
electric and magnetic dipoles, each of the dipoles perpendicular to the array axis. (It is un-
necessary to consider 2D arrays of electric and magnetic dipoles with the electric (magnetic)
dipoles in the direction of the array axis and the magnetic (electric) dipoles perpendicular
to the array axis, or 2D arrays of electric and magnetic dipoles with all dipoles oriented in
the direction of the array axis, because an electric (magnetic) dipole has no radial or longi-
tudinal magnetic (electric) field [20, secs. 8.5, 8.6] and so there is no coupling of the electric
dipoles with the magnetic dipoles of such arrays. 2D arrays of electric dipoles oriented in
the direction of the array axis have been treated in Section 6.) It is important to note that
although we refer in this and the following section of the report to the array elements as
“magnetodielectric spheres”, the analyses that we perform apply equally well to any array
elements that can be modeled as a pair of electric and magnetic dipoles at right angles to
each other such that only an incident electric (magnetic) field at the element center in the
direction of the electric (magnetic) dipole excites only the electric (magnetic) dipole field.
(Orthogonality of the spherical modes, as well as the fields of higher-than-dipole-order in-
cident spherical multipoles being zero at the center of each sphere, ensure these conditions
hold for magnetodielectric spheres whose scattering is predominantly dipolar fields.) There
are two polarizations of the electric dipoles to be considered, one where the dipoles are in
the array plane determined by the sphere centers and array axis, and the other where the
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dipoles are perpendicular to the array plane. These two polarizations are treated in 8.1 and
8.2, respectively. Since the electric and magnetic dipoles of one polarization are, apart from
a sign change, the magnetic and electric dipoles, respectively, of the other polarization, the
kd–βd equation for the polarization in which the electric dipoles are perpendicular to the
array plane can be obtained very simply from the kd–βd equation for the polarization in
which the electric dipoles are in the array plane.

8.1 ELECTRIC DIPOLES IN THE ARRAY PLANE

We choose the array axis to be the z axis of a Cartesian coordinate system with equi-
spaced columns of magnetodielectric spheres parallel to the x axis located at z = nd, n =
0,±1,±2, · · · . In each column the spheres are centered at x = mh,m = 0,±1,±2, · · · . The
electric and magnetic dipole components of each sphere are oriented in the x and y direction,
respectively, so that the electric dipoles lie in the xz plane, the array plane. We assume an
excitation of the array with the electric field parallel to the x axis and the magnetic field
parallel to the y axis, and such that all the spheres in any column of the array are excited
identically. Let E0

0 and H0
0 be the electric and magnetic field, respectively, incident on the

sphere at the location x = 0, y = 0, z = 0 from all the other spheres in the array. As will be
seen [see (8.18)] E0

0 has an x component only, and H0
0 has a y component only. Let E0mn

0

and H0mn
0 be the electric and magnetic field, respectively, incident on the reference sphere

from the sphere at the location (x, y, z) = (mh, 0, nd) so that

E0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

E0mn
0 +

∞∑

m=−∞
m 6=0

E0m0
0 (8.1a)

H0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

H0mn
0 +

∞∑

m=−∞
m 6=0

H0m0
0 . (8.1b)

From [5, eqs. (32),(33)] with sinφnm = 0,

E0mn
0 = b−n

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
sin θmn0 cos φmn0 r̂mn0

+

(
1 +

i

krmn0
− 1

(krmn0)2

)
cos θmn0 cos φmn0 θ̂mn0

]

+ b+n
eikrmn0

krmn0

(
1 +

i

krmn0

)
cosφmn0 θ̂mn0 (8.2a)

and

Hmn0
0 = Y0b+n

eikrmn0

krmn0

(
1 +

i

krmn0
− 1

(krmn0)2

)
cosφmn0 φ̂mn0

+ Y0b−n
eikrmn0

krmn0

(
1 +

i

krmn0

)
(cos θmn0 cos φmn0 φ̂mn0) (8.2b)
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where Y0 is the free-space admittance. The quantities in (8.2) are defined with reference to a
local spherical polar coordinate system with origin at (x, y, z) = (mh, 0, nd) (in turn defined
with reference to a local Cartesian coordinate system with the same origin whose axes are
parallel to those of the global Cartesian coordinate system). The distance from the (m,n)
sphere to the (0, 0) sphere, rmn0, is given by

rmn0 =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 (8.3)

and the unit vector in the direction from the (m,n) sphere to the (0, 0) sphere, r̂mn0, is

r̂mn0 = rmn0/rmn0, rmn0 = −mh x̂ − nd ẑ (8.4)

so that

cos θmn0 = r̂mn0 · ẑ = − nd

rmn0

(8.5)

and

sin θmn0 =
√

1 − cos2 θmn0 =
|m|h
rmn0

. (8.6)

Since r̂mn0 is also given by

r̂mn0 = sin θmn0 cos φmn0 x̂ + cos θmn0 ẑ (8.7)

it follows by substituting (8.5) and (8.6) in (8.7) and comparing with (8.4) that

cos φmn0 =

{
−1 : m > 0
+1 : m < 0

or φmn0 =

{
π : m > 0
0 : m < 0

. (8.8)

Then

θ̂mn0 = cos θmn0 cosφmn0 x̂ − sin θmn0 ẑ = ± nd

rmn0
x̂ − |m|h

rmn0
ẑ , m >

< 0 (8.9)

φ̂mn0 = cosφmn0 ŷ = ∓ ŷ, m >
< 0 (8.10)

sin θmn0 cos φmn0 r̂mn0 =
mh

r2
mn0

(mh x̂ + nd ẑ) (8.11)

cos θmn0 cos φmn0 θ̂mn0 =
(nd)2 x̂ − (mh)(nd) ẑ

r2
mn0

(8.12)

cosφmn0 θ̂mn0 =
−nd x̂ +mh ẑ

rmn0

(8.13)

cosφmn0 φ̂mn0 = ŷ (8.14)

and

cos θmn0 cos φmn0 φ̂mn0 = − nd

rmn0
ŷ . (8.15)

The constants b−n and b+n are related to the x component of the electric field and the y
component of the magnetic field, respectively, incident on any sphere in the nth column by
the scattering equations [5, eq. (31)]

b−n = S− E
0n
0x (8.16a)
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b+n = S+

H0n
0y

Y0
. (8.16b)

where S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole
scattering coefficients, respectively. “Normalized” means that b−n (b+n) is the coefficient of
exp(ikr)/(kr) in the outgoing electric (magnetic) dipole field in response to the incident field
E0n

0x x̂ (H0n
0y /Y0 ŷ) at the center of the x (y) directed electric (magnetic) dipole.6 Substituting

(8.11)-(8.15) in (8.2) we obtain

E0mn
0 = b−n

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
mh

r2
mn0

(mh x̂ + nd ẑ)

+

(
1 +

i

krmn0
− 1

(krmn0)2

)
nd

rmn0
(nd x̂ −mh ẑ)

]

− b+n
eikrmn0

krmn0

(
1 +

i

krmn0

)
nd x̂ −mh ẑ

rmn0

(8.17a)

and

Hmn0
0 = Y0 b+n

eikrmn0

krmn0

(
1 +

i

krmn0
− 1

(krmn0)2

)
ŷ

− Y0 b−n
eikrmn0

krmn0

(
1 +

i

krmn0

)
nd

rmn0
ŷ . (8.17b)

Note that when we sum over m from −∞ to ∞ the z components of Emn0
0 cancel and we

are left with an x component only of the electric field incident on the reference sphere (and
of course a y component only of the magnetic field). Thus, substituting (8.17) in (8.1) we
obtain

E0
0x =

∞∑

n=−∞
n6=0

{
b−n

∞∑

m=−∞

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
m2

ρ2
mn

+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
(nd/h)2

ρ2
mn

]
− b+n

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn

)
nd/h)

ρmn

}

6As we noted at the beginning of this section of the report, although we refer to the array elements as
“magnetodielectric spheres”, our analysis applies equally well to any array elements that can be modeled as
a pair of crossed electric and magnetic dipoles such that an incident electric (magnetic) field in the direction
of the electric (magnetic) dipole excites only the electric (magnetic) dipole field. If the array elements are
indeed spheres then S− and S+ are the normalized Mie dipole scattering coefficients [5, eqs.(30a,b)],

S− = −i
3
2
bsc
1

S+ = −i
3
2
asc
1

where bsc
1 and asc

1 are the electric and magnetic Mie dipole scattering coefficients defined in Stratton [20]. If
the array elements are not magnetodielectric spheres then S− and S+ must be known for the results of this
and the following section of the report to be applied.

90



+ 4b−0

∞∑

m=1

eikhρm0

khρm0

−i

khρm0

(
1 +

i

khρm0

)
(8.18a)

and
Hmn0

0y

Y0
=

∞∑

n=−∞
n6=0

{
b+n

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρm
− 1

(kh)2ρ2
mn

)

− b−n

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn

)
nd/h

ρmn

}

+ 2b+0

∞∑

m=1

eikhρm0

khρm0

(
1 +

i

khρm0
− 1

(kh)2ρ2
m0

)
(8.18b)

where we have let
ρmn =

√
m2 + (nd/h)2 (8.19)

with
ρm0 = m . (8.20)

We now assume that the array is excited by a traveling wave in the z direction with
real propagation constant β. Then the constants b−n and b+n in (8.18) equal b−0 and b+0,
respectively, apart from a phase shift given by

b−n = b−0 einβd, b+n = b+0 einβd . (8.21)

Substituting (8.21) in (8.18), using [from (8.16)] b−0 = S−E
0
0x and b+0 = S+H

0
0y/Y0 ,and

multiplying by (kh)3 we obtain

(kh)3 = S−

{
∞∑

n=−∞
n6=0

einβd

(
∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]
− q

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn

)

+ 4
∞∑

m=1

eikhρm0

ρm0

−i

ρm0

(
kh+

i

ρm0

)}
(8.22a)

and

(kh)3 = S+

{
∞∑

n=−∞
n6=0

einβd

[
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)

− 1

q

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn

]

+ 2
∞∑

m=1

eikhρm0

ρm0

(
(kh)2 +

ikh

ρm0
− 1

ρ2
m0

)}
(8.22b)
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where

q =
b+0

b−0
. (8.23)

(It is noted in [5] that the electromagnetic field scattered from each of the spheres in the
array is, apart from the phase factor of the traveling wave, a linear combination of an
electromagnetic field proportional to the field of an infinitesimal x directed electric dipole
with a normalized coefficient b−,0, and an electromagnetic field proportional to the field of
an infinitesimal y directed magnetic dipole with normalized coefficient b+,0, so that q is the
ratio of these two normalized scattered field coefficients.) As will be done below [see (8.44)-
(8.52)], by eliminating q from (8.22a) and (8.22b), the kd–βd equation is obtained that
determines the normalized traveling wave propagation constant βd in terms of kh, d/h, and
the normalized magnetodielectric sphere electric and magnetic dipole scattering coefficients
S− and S+.

It remains to convert the slowly convergent summations in (8.22) to rapidly convergent
forms. We begin with

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]
(8.24)

in (8.22a). This double sum is proportional to the electric field incident on the reference
sphere at (x, z) = (0, 0) scattered from the x directed electric dipoles in all the columns of
the array except for those in the self-column (z = 0). We have immediately from (4.15),
(4.44), and (4.45), in our analysis of 2D periodic arrays of electric dipoles in the array plane
and perpendicular to the array axis, that

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

[
−2i

ρmn

(
kh+

i

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]

= 2

∞∑

n=1

cos(nβd)

[
iπ(kh)2H

(1)
0 (nkd)

− 4
∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)]
. (8.25)

Next we consider the sum

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn
(8.26)
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with ρmn =
√
m2 + (nd/h)2. This sum is proportional to the y directed magnetic field

incident on the reference sphere scattered from all the x directed electric dipoles in the nth
column, n 6= 0, or equivalently to the x directed electric field incident on the reference sphere
scattered from all the y directed magnetic dipoles in the nth column, n 6= 0. We write (8.26)
as

nd

h
(kh)2

∞∑

m=−∞

eikh
√
m2 + (nd/h)2

(
1

m2 + (nd/h)2
+

1

(−ikh) [m2 + (nd/h)2]
3/2

)
. (8.27)

The sum has been evaluated earlier. Referring to (4.89)

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn

= nkd

{
− π

2
(kh)2

[
H

(1)
0 (|n|kd) +H

(1)
2 (|n|kd)

]

+ 2i

∞∑

m=1

[(2πm)2−(kh)2]
[
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)
−K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]}

= sgn(n)

[
−π(kh)2H

(1)
1 (|n|kd) + 4i(kh)

∞∑

m=1

K1

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
. (8.28)

[An alternate derivation of (8.28) using the Floquet mode expansion method is given below
in (8.59) - (8.69).] Then in (8.22)

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn

=

∞∑

n=1

2i sin(nβd)

(
− π(kh)2H

(1)
1 (nkd)

+ 4i(kh)
∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

))
. (8.29)

Next we consider the sum in (8.22b)

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρm
− 1

ρ2
mn

)
. (8.30)

This sum is proportional to the y directed magnetic field incident on the reference sphere
scattered from all the y directed magnetic dipoles in the nth column, n 6= 0. (While it might
appear at first that (apart from a factor of Y0) the y directed magnetic field scattered from
all the y directed magnetic dipoles in the nth column of the array incident on the reference
sphere at (x, y, z) = (0, 0, 0) should equal the x directed electric field scattered from all the x
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directed electric dipoles in the nth column incident on the reference sphere, in fact symmetry
does not hold because of the two-dimensionality of the problem. The y directed magnetic
dipoles are perpendicular to the xz plane in which scattering is calculated, whereas the x
directed electric dipoles lie in the xz plane.) From (4.90)

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
=

iπ(kh)2

2

[
H

(1)
0 (|n|kd) −H

(1)
2 (|n|kd)

]

+ 2
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
(8.31)

assuming that 0 < kh < 2π, and thus in (8.22b)

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)

= 2
∞∑

n=1

cos(nβd)

{
iπ(kh)2

2

[
H

(1)
0 (nkd) −H

(1)
2 (nkd)

]

+ 2
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

)]}
. (8.32)

[An alternate derivation of (8.31) using the Floquet mode expansion method is given below
in (8.70) - (8.81).]

The self-column sum in (8.22a)

−4
∞∑

m=1

eikhm

m

i

m

(
kh+

i

m

)
(8.33)

has been treated in Section 4. From (4.56) we have

4
∞∑

m=1

eikhm

m

−i

m

(
kh +

i

m

)
= 4 kh Cl2(kh) + 4 Cl3(kh) + iπ(kh)2 − i

2

3
(kh)3 (8.34)

with the Clausen functions Cl2(kh) and Cl3(kh) defined and approximated in (D.8). The
self-column sum in (8.22b)

2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)
(8.35)
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has been treated in Section 4. From (4.95)

2
∞∑

m=1

eikhm

m

(
(kh)2 +

ikh

m
− 1

m2

)

= − 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
+ i

[
π

2
(kh)2 − 2

3
(kh)3

]
(8.36)

for 0 < kh < 2π. Substituting (8.25), (8.29), (8.32), (8.34), and (8.36) in (8.22) we can then
write these equations in the form

(kh)3 = S− {<− + i=−} (8.37a)

and
(kh)3 = S+ {<+ + i=+} (8.37b)

where, assuming that q is real, an assumption that is verified shortly below [see 8.52)], <−,
the real part of the quantity within the brackets of (8.22a) with the original summations
replaced by the new expressions we have derived, is

<− = −2π(kh)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8
∞∑

n=1

cos(nβd)
∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

− q

[
2π(kh)2

∞∑

n=1

sin(nβd)Y1(nkd)

− 8 kh

∞∑

n=1

sin(nβd)

∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)]

+ 4 kh Cl2(kh) + 4 Cl3(kh) ; (8.38a)

=−, the imaginary part of the quantity within the brackets of (8.22a), is

=− = 2π(kh)2

∞∑

n=1

cos(nβd)J0(nkd) + q 2π(kh)2

∞∑

n=1

sin(nβd)J1(nkd)

+ π(kh)2 − 2

3
(kh)3 ; (8.38b)

<+, the real part of the quantity within the brackets of (8.22b) with the original summations
replaced by the rapidly convergent expressions we have derived, is

<+ = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]
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+ 4

∞∑

n=1

cos(nβd)

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

− 1

q

[
2π(kh)2

∞∑

n=1

sin(nβd)Y1(nkd)

− 8 kh

∞∑

n=1

sin(nβd)

∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ kh Cl2(kh) + Cl3(kh)

)
; (8.39a)

and =+, the imaginary part of the quantity within the brackets of (8.22b), is

=+ = π(kh)2

[
∞∑

n=1

cos(nβd)J0(nkd) −
∞∑

n=1

cos(nβd)J2(nkd)

]

− 1

q

(
−2π(kh)2

∞∑

n=1

sin(nβd)J1(nkd)

)
+
π

2
(kh)2 − 2

3
(kh)3 . (8.39b)

From (B.1a) and (B.5) we see that

=− = −2

3
(kh)3 (8.40)

which, together with (8.37a), by the argument used above in Section 4 [see (4.59)-(4.61)]
implies that

|S−| =
3

2
sinψ− (8.41)

where ψ− is the phase of the scattering coefficient S−. Also from (8.39b), making use of
(B.1a), (B.8a), and (B.5),

=+ = −2

3
(kh)3 (8.42)

implying similarly that

|S+| =
3

2
sinψ+ (8.43)

where ψ+ is the phase of the scattering coefficient S+. The properties of the scattering coeffi-
cients (8.41) and (8.43) were derived independently in [4] from reciprocity and power conser-
vation principles, and our obtaining them here thereby serves as an important check on our
analysis. It is worth noting that if βd < kd then, from (B.1b),

∑
cos(nβd)J0(nkd) 6= −1/2

and from (B.8b),
∑

cos(nβd)J2(nkd) 6= 0 and hence =− and =+ could not equal −2/3(kh)3

so that (8.41) and (8.43) would not hold. This is not possible for an array of short lossless
dipole scatterers. Hence βd > kd. This is a particular instance of the general result (1.4)
noted in the Introduction which holds for 2D arrays as well as for linear arrays.
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To obtain the kd–βd equation determining βd as a function of kd, d/h, and the scattering
coefficients S− and S+, we write (8.37) as

(kh)3 = S−

{
Σ1 − qΣ2

}
(8.44a)

and

(kh)3 = S+

{
Σ3 −

1

q
Σ2

}
(8.44b)

where from (8.38), (8.39), (8.40), and (8.42),

Σ1 = −2π(kh)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8
∞∑

n=1

cos(nβd)
∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+ 4 kh Cl2(kh) + 4 Cl3(kh) − i
2

3
(kh)3 (8.45)

Σ2 = 2π(kh)2

∞∑

n=1

sin(nβd)Y1(nkd)

− 8(kh)
∞∑

n=1

sin(nβd)
∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)
(8.46)

and

Σ3 = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

− 2(kh)2 ln

[
2 sin

(
kh

2

)]
− 2khCl2(kh) − 2Cl3(kh) − i

2

3
(kh)3 (8.47)

with the Clausen functions Cl2(kh) and Cl3(kh) defined and approximated by (D.8).
It is straightforward to show that the pair of equations (8.44a) and (8.44b) whose solution

gives the normalized traveling wave constant βd implies the important relations (8.41) and
(8.43) without having to assume that q is real as was done when we obtained (8.41) and
(8.43) above. For, from (8.44a),

S− ≡ |S−|eiψ− = (kh)3 (Σ1r − qrΣ2) − i (Σ1i − qiΣ2)

(Σ1r − qrΣ2)
2 + (Σ1i − qiΣ2)

2 (8.48)
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where we have let q = qr + iqi, Σ1 = Σ1r + iΣ1i, and noted that Σ2 is real. It is then simple
to solve (8.48) for |S−| and sinψ− and, using the fact that Σ1i = −2/3 (kh)3, to obtain

sinψ−

|S−|
=

2

3
+ qi

Σ2

(kh)2
. (8.49)

It follows immediately from (8.49) and (8.44b) that

sinψ+

|S+|
=

2

3
− qi

|q|2
Σ2

(kh)2
. (8.50)

since the imaginary part of Σ3 is also equal to −2/3 (kh)3. Adding (8.49) and (8.50) then
gives (

sinψ−

|S−|
− 2

3

)
+ |q|2

(
sinψ+

|S+|
− 2

3

)
= 0 . (8.51)

But the quantities within the parentheses of (8.51) depend only on properties of the indi-
vidual array elements whereas |q|2 varies with the array parameters d and h. It follows that
(8.51) implies (8.41) and (8.43). Thus the relations (8.41) and (8.43) must be satisfied if the
array is to support a lossless dipolar traveling wave. (The converse is, of course, not true.
The relations (8.41 and (8.43) do not guarantee that there will be a solution to equations
(8.44a) and (8.44b) that must be satisfied if a lossless traveling wave can be supported by
the array.) In [5] we noted that (8.41) and (8.43) are indeed satisfied by the normalized
electric and magnetic Mie scattering coefficients defined in Footnote 6. Here we have shown
that (8.41) and (8.43) must be satisfied by any element of a 2D periodic array that supports
a lossless traveling wave if the element can be modeled by a pair of crossed electric and mag-
netic dipoles at right angles to each other such that an incident electric (magnetic) field at
the element center in the direction of the electric (magnetic) dipole excites only the electric
(magnetic) dipole field. Since equations (8.44a) and (8.44b) also hold for 1D periodic arrays
[5, eqs.(51a,b)] and 3D periodic arrays [see (9.81a), (9.81b)] of such elements, this conclusion
applies to the elements of 1D and 3D periodic arrays as well.7

Solving for −q in (8.44a) and (8.44b) and equating the resulting expressions we obtain
the kd–βd equation

(kh)3 − S−Σ1

S−Σ2
=

S+Σ2

(kh)3 − S+Σ3
. (8.52)

We note that the kd–βd equation (8.52) is an equation of real quantities, for using the
expression for −q given by the LHS of (8.52), the fact that the imaginary part of Σ1 is
−2

3
(kh)3, the fact that Σ2 is real, and (8.41), the imaginary part of the LHS of (8.52) is

Im[−q] =
1

Σ2
Im

[
(kh)3

S−
− Σ1

]
=

(kh)3

Σ2
Im

[
1

|S−|eiψ−
+

2

3

]
=

2

3

(kh)3

Σ2
Im

[
e−iψ−

sinψ−
+ 1

]
= 0

(8.53)

7In the 1D and 3D cases Σ3 = Σ1. Although the actual expressions for Σ1 and Σ2 in the 1D and 3D
cases differ from those in the 2D case the essential features are the same: the imaginary part of Σ1 equals
−2/3 (kh)3 — −2/3 (kd)3 in the 1D case — and Σ2 is real.
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and similarly for the RHS of (8.52). It is simple to solve (8.52) numerically for βd given
values of kd, kh, S−, and S+, using, for example, a simple search procedure with secant
algorithm refinement.

To facilitate calculations of Σ1, Σ2, and Σ3, the following may be noted. Rapidly con-
vergent expressions for the slowly convergent Schlömilch series

∑
cos(nβd)Y0(nkd) and∑

cos(nβd)Y2(nkd) are given in (B.2a) and (B.9)-(B.10), respectively. All series involv-
ing the modified Bessel functions K0, K1, and K2, converge very rapidly because of the
exponential decay of these functions so that only a few terms of the series give sufficient
accuracy. The convergence of the series

∑
sin(nβd)Y1(nkd) can be greatly accelerated by

using (B.6)-(B.7).
The expressions we have given for Σ1, Σ2, and Σ3, in (8.45)-(8.47) are valid for the

transverse element separation h in the range 0 < kh < 2π. Since several of the individual
terms of these quantities become singular as kh approaches 2π the expressions (8.45)-(8.47)
cannot be used to calculate Σ1, Σ2, and Σ3 at kh = 2π. It is therefore worthwhile to obtain
the limiting values of these quantities as kh → 2π from below. First, considering Σ1 given
by (8.45) and comparing it to the expression (4.58) for < in our treatment of 2D arrays of
electric dipoles perpendicular to the array axis and in the plane of the array, we see that the
two expressions are identical apart from the term −i(2/3)(kh)3 in Σ1. Hence from (4.64) we
have immediately

Σ1
kh→2π∼ −2π(2π)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8(2π)2
∞∑

n=1

cos(nβd)
∞∑

m=2

(m2−1)K0

(
2πn(d/h)

√
m2 − 1

)
+4(1.20205...)−i

2

3
(2π)3 . (8.54)

Next, considering Σ2, from the small argument form of the modified Bessel function (C.5)
we have for m = 1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)

kh→2π∼
√

(2π)2 − (kh)2




1

2

1
1

2
(nd/h)

√
(2π)2 − (kh)2


 =

1

nd/h
(8.55)

so that

lim
kh→2π

− 8(kh)
∞∑

n=1

sin(nβd)
√

(2π)2 − (kh)2 K1

(
n(d/h)

√
(2π)2 − (kh)2

)

= − 8(2π)
1

d/h

∞∑

n=1

sin(nβd)

n
= − 8π

d/h
(π − βd) (8.56)

where we have used (D.1). Hence

lim
kh→2π

Σ2 = 2π(2π)2

∞∑

n=1

sin(nβd)Y1(nkd) −
8π

d/h
(π − βd)
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− 8(2π)
∞∑

n=1

sin(nβd)
∞∑

m=2

2π
√
m2 − 1 K1

(
2πn(d/h)

√
m2 − 1

)
. (8.57)

Finally, considering Σ3 given by (8.47) and comparing it to the expression (4.55) for < in
our treatment of 2D arrays of electric dipoles perpendicular to both the array axis and the
array plane, we see that the two expressions are identical apart from the term i(2/3)(kh)3

in Σ3. Hence from (4.106) we have immediately that

Σ3
kh→2π→ −π(2π)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4(2π)2

∞∑

n=1

cos(nβd)
∞∑

m=2

[
(m2 + 1)K0

(
2πn(d/h)

√
m2 − 1

)

− (m2 − 1)K2

(
2πn(d/h)

√
m2 − 1

)]
+ (2π)2

(
4γ + 4 ln

1√
4π

d

h
+

4π

βd

)

+ (2π)2(4π)

[
∞∑

l=1

(
1

(2lπ − βd)2
− 1

2lπ

)
+

∞∑

l=1

(
1

(2lπ + βd)2
− 1

2lπ

)]

− 8

(d/h)2

[
π2

6
− πβd

2
+

(βd)2

4

]
− 2 Cl3(2π) − i

2

3
(2π)3 (8.58)

with Cl3(2π) given by (D.10).
In concluding this subsection we give alternate derivations, using the Hertz vector po-

tential, of the rapidly convergent expressions (8.28), proportional to the y directed magnetic
field incident on the reference sphere scattered from all the x directed electric dipoles in the
nth column, n 6= 0, and (8.31), proportional to the y directed magnetic field incident on the
reference sphere scattered from all the y directed magnetic dipoles in the nth column, n 6= 0.
We begin with (8.26), the slowly convergent form of (8.28) which we repeat here

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn
, ρmn =

√
m2 + (nd/h)2 . (8.59)

The magnetic field radiated by an x directed electric dipole at the origin of a Cartesian
coordinate system is proportional to the curl of the Hertz vector potential for an x directed
electric dipole [see (4.48)],

C

(
∇×eikr

kr
x̂

)
. (8.60)

where C is the proportionality constant whose value we do not need here, so that the y
component of the magnetic field is

C

(
∇×eikr

kr
x̂

)

y

= C
∂

∂z

eikr

kr
, r =

√
x2 + z2 (8.61)
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referring to [22, Appendix 1, eq. 51]. Hence the magnetic field radiated by the column of x
directed electric dipoles located at z = 0, x = mh, m = 0, ±1, ±2, · · · , is

C
∂

∂z

∞∑

m=−∞

eikrm

krm
= Cz

∞∑

m=−∞

eikrm

kr2
m

(
ik − 1

rm

)
, rm =

√
(x−mh)2 + z2 . (8.62)

Now from (2.34) and (2.42) the field radiated by the acoustic monopoles located in the
column y = 0, z = 0 at x = 0, ±h, ±2h, · · · , each of which radiates a field equal to

eikr/(kr) is

∞∑

m=−∞

eikrm

krm
=

∞∑

m=−∞

B0
mH

(1)
0 (kmρ) ei(2π/h)mx, rm =

√
(x−mh)2 + ρ2 (8.63)

where

B0
m =

iπ

kh
(8.64)

and
km =

√
k2 − (2πm/h)2 (8.65)

with km positive real (positive imaginary) according as (kh)2 > (<) (2πm)2. Letting z = ρ
in (8.62) and substituting the RHS of (8.63) for the sum over m in the LHS of (8.62) then
yields

Cρ
∞∑

m=−∞

eikrm

kr2
m

(
ik − 1

rm

)
= −C

∞∑

m=−∞

B0
mkmH

(1)
1 (kmρ) ei(2π/h)mx . (8.66)

In particular, for ρ = |n|d, and x = 0, rm given in (8.62) is equal to

rm =
√
ρ2 + (x−mh)2 =

√
(nd)2 + (mh)2 = h

√
m2 + (nd/h)2 = hρmn (8.67)

where ρmn is defined in (8.19) and given again in (8.59) so that

∞∑

m=−∞

eikhρmn

kh2ρ2
mn

(
ikh− 1

ρmn

)
|n|d/h = −

∞∑

m=−∞

B0
mkmH

(1)
1 (km|n|d) . (8.68)

Now the sum we wish to evaluate, (8.59), equals the LHS of (8.68) multiplied by sgn(n)(−ik2h3).
Therefore, with (8.64) and (8.65), and making use of the Bessel function relation (C.2),

sgn(n)
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
|n|d/h
ρmn

= sgn(n)(−ik2h3)
∞∑

m=−∞

B0
mkmH

(1)
1 (km|n|d)

= −sgn(n)

[
− π(kh)2H

(1)
1 (|n|kd)

+ 4i kh
∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
(8.69)
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identical to the expression (8.28) obtained using the Poisson summation formula.
We end this subsection with an alternate derivation of the rapidly convergent expression

obtained in (8.31) for the sum [see (8.30)]

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
, ρmn =

√
m2 + (nd/h)2 . (8.70)

This is the sum proportional to the y directed magnetic field at x = 0, y = 0, z = 0 due to
all the y directed magnetic dipoles in the nth column, z = nd, n 6= 0. As we did just above
in our alternate derivation of the rapidly convergent form of (8.59) we take the x axis to be
the array axis and the magnetic dipoles to be located in columns parallel to the z axis at
z = mh,m = 0,±h,±2h, · · · . The magnetic dipoles themselves are parallel to the y axis
just as they are in the original choice of coordinate axes. The magnetic field radiated by a
y directed magnetic dipole located at the coordinate system origin is given by

C ∇ × ∇×
(

eikr

kr
ŷ

)
. (8.71)

Since the same field is also given by the b+n term of (8.2b) with n = 0 and the triple subscripts
dropped, the value of C can be found easily by expanding (8.71) in spherical coordinates
(using, for example, [22, Appendix 1, eqs. 118, 161]) and equating the 1/(kr) term of the φ
component of the field with Y0b+0 exp(ikr)/(kr) cos φ, thus yielding

C =
Y0b+0

k2
. (8.72)

The ρ and φ components of the magnetic field radiated by a y directed magnetic dipole
located at the coordinate system origin are given by the ρ and φ components of

C ∇ × ∇×eikr

kr

(
sinφ ρ̂ + cos φ φ̂

)
, r =

√
ρ2 + z2 . (8.73)

Using the expression [22, Appendix 1, eq. 101] for ∇ × ∇ in cylindrical coordinates we then
find that the ρ component is given by

−C sinφ

(
∂2

∂z2
+

1

ρ

∂

∂ρ

)
eikr

kr
(8.74)

and the φ component is given by

−C cosφ

(
∂2

∂z2
+

∂2

∂ρ2

)
eikr

kr
. (8.75)

Since we are concerned with the y directed magnetic field when φ = 0 or π we need pay atten-

tion only to the φ component of the magnetic field. Applying the operator −C cosφ

(
∂2

∂z2 + ∂2

∂ρ2

)

to both sides of (8.63) giving the field radiated by a column of acoustic monopoles for which
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x = 0 each of which radiates a field equal to eikr/(kr), we find that the φ component of the
magnetic field is given by

−C cos φ
∞∑

m=−∞

B0
m

[
−
(

2πm

h

)2

H
(1)
0 (kmρ) +

(kmρ)
2

ρ2

d2

d(kmρ)2
H

(1)
0 (kmρ)

]
ei(2π/h)mz

= −1

2
C cos φ

∞∑

m=−∞

B0
m

{
−
[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ)

+

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz (8.76)

with B0
m given by (8.64), km given by (8.65), and where we have referred to (6.66) for some

of the intermediate steps. The y component of the magnetic field radiated by the column of
y directed magnetic dipoles is then given by Hφ cosφ, φ = 0, π or

−1

2
C

∞∑

m=−∞

B0
m

{
−
[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ) +

[
k2 −

(
2πm

h

)2
]
H

(1)
2 (kmρ)

}
ei(2π/h)mz

= −1

2
C

∞∑

m=−∞

B0
m

{
−

[
k2 +

(
2πm

h

)2
]
H

(1)
0 (kmρ)

+

[
k2 −

(
2πm

h

)2
][

2

kmρ
H

(1)
2 (kmρ) −H

(1)
0 (kmρ)

]}
ei(2π/h)mz

= −C
∞∑

m=−∞

B0
m

{
− k2H

(1)
0 (kmρ) +

[
k2 −

(
2πm

h

)2
]
H

(1)
1 (kmρ)

kmρ

}
ei(2π/h)mz . (8.77)

When ρ = |n|d and z = 0,

rm =
√

(nd)2 + (mh)2 = h
√
m2 + (nd/h)2 = hρmn (8.78)

with ρmn given in (8.70) . We then have, referring to (8.2b),

Y0b+0

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)

= −Y0
b+0

k2

∞∑

m=−∞

B0
m

[
−k2H

(1)
0 (km|n|d) +

km
|n|d

H
(1)
1 (km|n|d)

]
(8.79)

or

∞∑

m=−∞

eikhρmn

kh3ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
= −

∞∑

m=−∞

B0
m

[
−k2H

(1)
0 (km|n|d) +

km
|n|d

H
(1)
1 (km|n|d)

]
.

(8.80)
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Now the sum we wish to evaluate, (8.70), equals the LHS of (8.80) multiplied by kh3.
Therefore, with (8.64) and (8.65), making use of the Bessel function relations (C.1) and
(C.2)-(C.9), and assuming that 0 < kh < 2π,

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
= iπ(kh)2

∞∑

m=−∞

H
(1)
0

(
|n|(d/h)

√
(kh)2 − (2πm)2

)

− iπ
1

|n|d/h

∞∑

m=−∞

√
(kh)2 − (2πm)2

|n|d/h H
(1)
1

(
|n|(d/h)

√
(kh)2 − (2πm)2

)

=
iπ(kh)2

2

[
H

(1)
0 (|n|kd) −H

(1)
2 (|n|kd)

]

+ 2
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
|n|(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
|n|(d/h)

√
(2πm)2 − (kh)2

)]
(8.81)

in agreement with the expression (8.31) obtained using the Poisson summation formula.

8.2 ELECTRIC DIPOLES PERPENDICULAR TO THE ARRAY

PLANE

As we noted above in the introduction to Section 8, the effective difference between the
polarization considered in this subsection and the polarization considered in 8.1 is that the
electric and magnetic dipoles of the spheres in the two arrays are interchanged. This implies
that the basic equations equivalent to (8.22) for the polarization considered in 8.1, can be
obtained for the polarization considered in this subsection simply by replacing the electric
and magnetic dipole scattering coefficients S− and S+ in (8.22) by S+ and S−, respectively,
and also by replacing q by 1/q since, as noted following (8.23), q is the ratio of the normalized
magnetic dipole field coefficient, b+0 to the normalized electric dipole field coefficient, b−0.
To substantiate this claim we will proceed to derive the equations corresponding to (8.22). It
will then be obvious that the kd–βd equation in its final form for the polarization considered
here can be obtained directly from the kd–βd equation, (8.52), considered in 8.1, simply by
taking Σ1 and Σ3 here to equal Σ3 and Σ1, respectively, given by (8.47) and (8.45) in 8.1,
and taking Σ2 here to equal Σ2 given by (8.46) in 8.1.

We proceed by choosing the array axis to be the z axis of a Cartesian coordinate system
with equispaced rows of magnetodielectric spheres parallel to the y axis located at z =
nd, n = 0,±1,±2, · · · . In each row the spheres are centered at y = mh,m = 0,±1,±2, · · · .
The electric and magnetic dipole components of each sphere are oriented in the x and y
direction, respectively, so that the electric dipoles are perpendicular to the yz plane, the
plane of the array. We assume an excitation of the array with the electric field parallel to
the x axis and the magnetic field parallel to the y axis, and such that all the spheres in any
row of the array are excited identically. Let E0

0 and H0
0 be the electric and magnetic field,
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respectively, incident on the sphere at the location x = 0, y = 0, z = 0 from all the other
spheres in the array. As will be seen [see (8.99)] E0

0 has an x component only, and H0
0 has a y

component only. Let E0mn
0 and H0mn

0 be the electric and magnetic field, respectively, incident
on the reference sphere from the sphere at the location (x, y, z) = (0,mh, nd) so that

E0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

E0mn
0 +

∞∑

m=−∞
m 6=0

E0m0
0 (8.82a)

H0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

H0mn
0 +

∞∑

m=−∞
m 6=0

H0m0
0 . (8.82b)

From [5, eqs. (32),(33)]

E0mn
0 = b−n

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
sin θmn0 cos φmn0 r̂mn0

+

(
1 +

i

krmn0
− 1

(krmn0)2

)(
cos θmn0 cos φmn0 θ̂mn0 − sinφmn0 φ̂mn0

)]

+ b+n
eikrmn0

krmn0

(
1 +

i

krmn0

)(
cosφmn0 θ̂mn0 − cos θmn0 sinφmn0 φ̂mn0

)
(8.83a)

and

Hmn0
0 = Y0b+n

eikrmn0

krmn0

[
−2i

krmn0

(
1 +

i

krmn0

)
sin θmn0 sinφmn0 r̂mn0

+

(
1 +

i

krmn0
− 1

(krmn0)2

)(
cos θmn0 sin φmn0 θ̂mn0 + cosφmn0 φ̂mn0

)

+ Y0b−n
eikrmn0

krmn0

(
1 +

i

krmn0

)
(sinφmn0 θ̂mn0 + cos θmn0 cosφmn0 φ̂mn0) (8.83b)

where Y0 is the free-space admittance. The quantities in (8.83) are defined with reference
to a local spherical polar coordinate system with origin at (x, y, z) = (0,mh, nd) (in turn
defined with reference to a local Cartesian coordinate system with the same origin whose
axes are parallel to those of the global Cartesian coordinate system). The distance from the
(m,n) sphere to the (0, 0) sphere, rmn0, is given by

rmn0 =
√

(mh)2 + (nd)2 = h
√
m2 + (nd/h)2 (8.84)

and the unit vector in the direction from the (m,n) sphere to the (0, 0) sphere, r̂mn0, is

r̂mn0 = rmn0/rmn0, rmn0 = −mh ŷ − nd ẑ (8.85)

so that

cos θmn0 = r̂mn0 · ẑ = − nd

rmn0
(8.86)
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and

sin θmn0 =
√

1 − cos2 θmn0 =
|m|h
rmn0

. (8.87)

Since r̂mn0 is also given by

r̂mn0 = sin θmn0 sinφmn0 ŷ + cos θmn0 ẑ (8.88)

it follows by substituting (8.86) and (8.87) in (8.88) and comparing with (8.85) that

sinφmn0 =

{
−1 : m > 0
+1 : m < 0

or φmn0 =

{
−π/2 : m > 0
+π/2 : m < 0

. (8.89)

and
cos φmn0 = 0 . (8.90)

Then

θ̂mn0 = cos θmn0 sin φmn0 ŷ − sin θmn0 ẑ = ± nd

rmn0
ŷ − |m|h

rmn0
ẑ , m >

< 0 (8.91)

φ̂mn0 = − sinφmn0 x̂ = ± x̂ , m >
< 0 (8.92)

sinφmn0 φ̂mn0 = −x̂ (8.93)

cos θmn0 sinφmn0 φ̂mn0 =
nd

rmn0

x̂ (8.94)

sin θmn0 sinφmn0 r̂mn0 =
(mh)2

r2
mn0

ŷ +
(mh)(nd)

rmn0

ẑ (8.95)

cos θmn0 sinφmn0 θ̂mn0 =
(nd)2 ŷ − (mh)(nd) ẑ

r2
mn0

(8.96)

and

sin φmn0 θ̂mn0 =
−nd ŷ +mh ẑ

rmn0
. (8.97)

The constants b−n and b+n are related to the x component of the electric field and the y
component of the magnetic field, respectively, incident on any sphere in the nth row by the
scattering equations (8.16). Substituting (8.93)-(8.97) in (8.83) we obtain

E0mn
0 = b−n

eikrmn0

krmn0

(
1 +

i

krmn0
− 1

(krmn0)2

)
x̂

− b+n
eikrmn0

krmn0

(
1 +

i

krmn0

)
nd

rmn0
x̂ (8.98a)

and

Hmn0
0 = Y0 b+n

eikrmn0

krmn0

(
−2i

krmn0

(
1 +

mi

krmn0

)[
(mh)2 ŷ + (mh)(nd) ẑ

r2
mn0

]
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+

(
1 +

i

krmn0
− 1

(krmn0)2

)[
(nd)2 ŷ − (mh)(nd) ẑ

r2
mn0

])

+ Y0 b−n
eikrmn0

krmn0

(
1 +

i

krmn0

)
−nd ŷ +mh ẑ

rmn0
. (8.98b)

Note that when summed overm from −∞ to ∞ the z components of Hmn0
0 cancel and we are

left with a y component only of the magnetic field. Substituting (8.98) in (8.82) we obtain

E0
0x =

∞∑

n=−∞
n6=0

{
b−n

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)

− b+n

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn

)
nd/h)

ρmn

}

+ 2b−0

∞∑

m=1

eikhρm0

khρm0

(
1 +

i

khρm0
− 1

(kh)2ρ2
m0

)
(8.99a)

and
Hmn0

0y

Y0
=

∞∑

n=−∞
n6=0

{
b+n

∞∑

m=−∞

eikhρmn

khρmn

[
−2i

khρmn

(
1 +

i

khρmn

)
m2

ρ2
mn

+

(
1 +

i

khρmn
− 1

(kh)2ρ2
mn

)
(nd/h)2

ρ2
mn

]
− b−n

∞∑

m=−∞

eikhρmn

khρmn

(
1 +

i

khρmn

)
nd/h

ρmn

}

+ 2b+0

∞∑

m=1

eikhρm0

khρm0

−2i

khρm0

(
1 +

i

khρm0

)
(8.99b)

where we have let
ρmn =

√
m2 + (nd/h)2 (8.100)

with
ρm0 = m . (8.101)

We now assume that the array is excited by a traveling wave in the z direction with real
propagation constant β. Then the constants b−n and b+n in (8.99) are identical apart from
a phase shift given by

b−n = b−0e
inβd, b+n = b+0e

inβd . (8.102)

Substituting (8.102) in (8.99), using [from (8.16)] b−0 = S−E
0
0x and b+0 = S+H

0
0y/Y0 ,and

multiplying by (kh)3 we obtain

(kh)3 = S−

{
∞∑

n=−∞
n6=0

einβd

[
∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
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− q

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h)

ρmn

]

+ 2
∞∑

m=1

eikhρm0

ρm0

(
(kh)2 +

ikh

ρm0
− 1

ρ2
m0

)}
(8.103a)

and

(kh)3 = S+

{
∞∑

n=−∞
n6=0

einβd

(
∞∑

m=−∞

eiρmn

ρmn

[
−2i

ρmn

(
kh+

ikh

ρmn

)
m2

ρ2
mn

+

(
(kh)2 +

ikh

ρmn
− 1

ρ2
mn

)
(nd/h)2

ρ2
mn

]

− 1

q

∞∑

m=−∞

eikhρmn

ρmn

(
(kh)2 +

ikh

ρmn

)
nd/h

ρmn

)

+ 4

∞∑

m=1

eikhρm0

ρm0

−i

ρm0

(
kh +

i

ρm0

)}
. (8.103b)

Comparing these equations with the corresponding equations (8.22) in 8.1, we see, exactly
as we claimed at the beginning of this subsection, that (8.103) can be obtained from (8.22)
simply by replacing S−, S+, and q in (8.22) by S+, S−, and 1/q, respectively. This is as
it should be since the role played by the electric dipoles in 8.1 is now played by magnetic
dipoles and vice versa. Since (8.22) can be put in the form (8.44) leading to the kd–βd
equation (8.52), it follows that we can go directly from (8.103) to the final form of the kd–βd
equation here simply by interchanging Σ1 and Σ3 in (8.52) thus obtaining

(kh)3 − S−Σ1

S−Σ2
=

S+Σ2

(kh)3 − S+Σ1
. (8.104)

where Σ1 equals Σ3 given by (8.47)

Σ1 = −π(kh)2

[ ∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

−2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ kh Cl2(kh) + Cl3(kh)

)
− i

2

3
(kh)3 (8.105)

108



Σ2 equals Σ2 given by (8.46)

Σ2 = 2π(kh)2

∞∑

n=1

sin(nβd)Y1(nkd)

− 8 kh
∞∑

n=1

sin(nβd)
∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)
(8.106)

and Σ3 equals Σ1 given by (8.45)

Σ3 = −2π(kh)2
∞∑

n=1

cos(nβd)Y0(nkd)

− 8

∞∑

n=1

cos(nβd)

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+ 4 kh Cl2(kh) + 4 Cl3(kh) − i
2

3
(kh)3 (8.107)

with the Clausen functions Cl2(kh) and Cl3(kh) defined and approximated by (D.8). The
proof given in Section 8 [see (8.53)] that the kd–βd equation is an equation of real quantities
applies here as well. It is simple to solve (8.104) numerically for βd given values of kd, kh,
S−, and S+, using, for example, a simple search procedure with secant algorithm refinement.

To facilitate calculations of Σ1, Σ2, and Σ3, the following may be noted. The series∑
cos(nβd)Y0(nkd) is treated in (B.2) and the series

∑
cos(nβd)Y2(nkd) is evaluated by

(B.9)-(B.10). All series involving the modified Bessel functions K0, K1, or K2 converge
very rapidly because of the exponential decay of these functions so that only a few terms
of the series give sufficient accuracy. The convergence of the series

∑
sin(nβd)Y1(nkd) can

be greatly accelerated by using (B.6)-(B.7). The forms of (8.105)-(8.107) to be used when
kh = 2π are given by (8.58), (8.57), and (8.54), respectively.

9 3D MAGNETODIELECTRIC SPHERE ARRAYS

This section consists of two subsections. In the first and principal subsection we obtain
the kd–βd equation for traveling waves supported by 3D infinite periodic arrays of magne-
todielectric spheres. Two forms of the Floquet mode expansion method, one based on the
asymptotic analysis of an integral and the other employing the Hertz vector potential, are
used to convert the original form of the kd–βd equation containing extremely slowly conver-
gent summations to a form suitable for calculations. If the array elements are sufficiently
close together, the array can be regarded as a form of homogeneous medium characterized
by an effective permittivity and permeability. In the second subsection we describe two
methods for obtaining the effective permittivity and permeability. The first method obtains
the permittivity and permeability directly from the solution to the kd–βd equation. The
second method, based on the Clausius-Mossotti relation, is completely independent of the
kd–βd equation and is more restrictive than the first method.
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9.1 kd–βd EQUATION FOR 3D MAGNETODIELECTRIC SPHERE

ARRAYS

In this subsection we consider traveling waves supported by 3D periodic arrays of lossless
magnetodielectric spheres. It is assumed that the spheres can be modeled by pairs of crossed
electric and magnetic dipoles, each of the dipoles perpendicular to the array axis. (It is un-
necessary to consider 3D arrays of electric and magnetic dipoles with the electric (magnetic)
dipoles in the direction of the array axis and the magnetic (electric) dipoles perpendicular to
the array axis, or 3D arrays of electric and magnetic dipoles with all dipoles oriented in the
direction of the array axis, because an electric (magnetic) dipole has no radial or longitudinal
magnetic (electric) field [20, secs. 8.5, 8.6] and so there is no coupling of the electric dipoles
with the magnetic dipoles of such arrays.) As we noted in Section 8, the analysis performed
here is equally applicable to any 3D periodic arrays whose elements can be modeled by a
pair of crossed electric and magnetic dipoles at right angles to each other such that only an
incident electric (magnetic) field at the element center in the direction of the electric (mag-
netic) dipole excites only the electric (magnetic) dipole field. We choose the array axis to
be the z axis of a Cartesian coordinate system with equispaced planes of magnetodielectric
spheres normal to the z axis located at z = nd, n = 0,±1,±2, · · · . In each plane the spheres
are centered at x = mh, y = lh, l,m = 0,±1,±2, · · · . The electric and magnetic dipole
components of each sphere are oriented in the x and y direction, respectively. We assume
an excitation of the array with the electric field parallel to the x axis and the magnetic field
parallel to the y axis, and such that all the spheres in any column of the array are excited
identically. Let E0

0 and H0
0 be the electric and magnetic field, respectively, incident on the

sphere at the location x = 0, y = 0, z = 0 from all the other spheres in the array. As will be
seen [see (9.21)] E0

0 has an x component only, and H0
0 has a y component only. Let E0mln

0

and H0mln
0 be the electric and magnetic field, respectively, incident on the reference sphere

from the sphere at the location (x, y, z) = (mh, lh, nd) so that

E0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

∞∑

l=−∞

E0mln
0 +

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

E0ml0
0 (9.1a)

H0
0 =

∞∑

n=−∞
n6=0

∞∑

m=−∞

∞∑

l=−∞

H0mln
0 +

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

H0ml0
0 . (9.1b)

From [5, eqs. (32),(33)]

E0mln
0 = b−n

eikrmln0

krmln0

[
−2i

krmln0

(
1 +

i

krmln0

)
sin θmln0 cosφmln0 r̂mln0

+

(
1 +

i

krmln0
− 1

(krmln0)2

)(
cos θmln0 cosφmln0 θ̂mln0 − sinφmln0 φ̂mln0

)]

+ b+n
eikrmln0

krmln0

(
1 +

i

krmln0

)(
cos φmln0 θ̂mln0 − cos θmln0 sinφmln0 φ̂mln0

)
(9.2a)
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and

H0mln
0 = Y0b+n

eikrmln0

krmln0

[
−2i

krmln0

(
1 +

i

krmln0

)
sin θmln0 sinφmln0 r̂mln0

+

(
1 +

i

krmln0
− 1

(krmln0)2

)(
cos θmln0 sinφmln0 θ̂mln0 + cos φmln0 φ̂mln0

)]

+ Y0b−n
eikrmln0

krmln0

(
1 +

i

krmln0

)(
sinφmln0 θ̂mln0 + cos θmln0 cosφmln0 φ̂mln0

)
. (9.2b)

The quantities in (9.2) are defined with reference to a local spherical polar coordinate system
with origin at (x, y, z) = (mh, lh, nd) (in turn defined with reference to a local Cartesian co-
ordinate system with the same origin whose axes are parallel to those of the global Cartesian
coordinate system). The distance from the (m, l, n) sphere to the (0, 0, 0) sphere, rmln0, is
given by

rmln0 =
√

(mh)2 + (lh)2 + (nd)2 = h
√
m2 + l2 + (nd/h)2 (9.3)

and the unit vector in the direction from the (m, l, n) sphere to the (0, 0, 0) sphere, r̂mln0, is

r̂mln0 = rmln0/rmln0, rmln0 = −mh x̂ − lh ŷ − nd ẑ (9.4)

so that

cos θmln0 = r̂mln0 · ẑ = − nd

rmln0
=

−nd/h√
m2 + l2 + (nd/h)2

(9.5)

and

sin θmln0 =
√

1 − cos2 θmln0 =
h
√
m2 + l2

rmln0
=

√
m2 + l2√

m2 + l2 + (nd/h)2
. (9.6)

Also

φmln0 = tan−1 r̂mln0 · ŷ
r̂mln0 · x̂

=
−lh
−mh (9.7)

cosφmln0 =
−mh

h
√
m2 + l2

= − m√
m2 + l2

(9.8)

and

sinφmln0 =
−lh

h
√
m2 + l2

= − l√
m2 + l2

. (9.9)

Then

sin θmln0 cosφmln0 r̂mln0 =
1

m2 + l2 + (nd/h)2

[
m2 x̂ +ml ŷ + (nd/h)m ẑ

]
(9.10)

cos θmln0 cos φmln0 θ̂mln0 =
1

m2 + l2 + (nd/h)2

[
(nd/h)2

m2 + l2
(
m2 x̂ +ml ŷ

)
− (nd/h)m ẑ

]

(9.11)

sin φmln0 φ̂mln0 = − 1

m2 + l2
(
l2 x̂−ml ŷ

)
(9.12)
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cos φmln0 θ̂mln0 = − 1√
m2 + l2 + (nd/h)2

[
nd/h

m2 + l2
(
m2 x̂ +ml ŷ

)
+m ẑ

]
(9.13)

cos θmln0 sinφmln0 φ̂mln0 =
nd/h√

m2 + l2 + (nd/h)2 (m2 + l2)

(
l2 x̂ −ml ŷ

)
(9.14)

sin θmln0 sinφmln0 r̂mln0 =
1

m2 + l2 + (nd/h)2

[
ml x̂ + l2 ŷ + (nd/h)l ẑ

]
(9.15)

cos θmln0 sinφmln0 θ̂mln0 =
1

m2 + l2 + (nd/h)2

[
(nd/h)2

m2 + l2
(
ml x̂ + l2 ŷ

)
+ (nd/h)l ẑ

]
(9.16)

cos φmln0 φ̂mln0 =
1

m2 + l2
(
ml x̂ +m2 ŷ

)
(9.17)

sinφmln0 θ̂mln0 = − 1√
m2 + l2 + (nd/h)2

[
nd/h

m2 + l2
(
ml x̂ + l2ŷ

)
− l ẑ

]
(9.18)

and

cos θmln0 cos φmln0 φ̂mln0 =
nd/h√

m2 + l2 + (nd/h)2 (m2 + l2)

(
ml x̂ −m2 ŷ

]
. (9.19)

The corresponding quantities in the self-plane summation of (9.1) are obtained from the
quantities given by (9.3)-(9.19) by setting n = 0. The constants b−n and b+n are related to
the x component of the electric field and the y component of the magnetic field, respectively,
incident on any sphere in the nth plane by the scattering equations [5, eq. (31)]

b−n = S− E
0n
0x (9.20a)

b+n = S+

H0n
0y

Y0

. (9.20b)

where S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole
scattering coefficients, respectively. “Normalized” means that b−n (b+n) is the coefficient of
exp(ikr)/(kr) in the outgoing electric (magnetic) dipole field in response to the incident field
E0n

0x x̂ (H0n
0y /Y0 ŷ) at the center of the x (y) directed electric (magnetic) dipole. We note

that when summed over m and l from −∞ to ∞ the ŷ and ẑ components of the electric field
vanish, and the x̂ and ẑ components of the magnetic field vanish. Thus for n 6= 0,

E0n
0x = b−n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

[
−2i

khρmln

(
1 +

i

khρmln

)
m2

ρ2
mln

+

(
1 +

i

khρmln
− 1

(khρmln)2

)
l2 + (nd/h)2

ρ2
mln

]

− b+n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

(
1 +

i

khρmln

)
nd/h

ρmln
(9.21a)
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and
H0n

0y

Y0
= b+n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

[
−2i

khρmln

(
1 +

i

khρmln

)
l2

ρ2
mln

+

(
1 +

i

khρmln
− 1

(khρmln)2

)
m2 + (nd/h)2

ρ2
mln

]

− b−n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

(
1 +

i

khρmln

)
nd/h

ρmln
(9.21b)

where we have let
ρmln =

√
m2 + l2 + (nd/h)2 . (9.22)

For n = 0, the self-plane,

E00
0x = b−0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

khρml0

[
−2i

khρml0

(
1 +

i

khρml0

)
m2

ρ2
ml0

+

(
1 +

i

khρml0
− 1

(khρml0)2

)
l2 + (nd/h)2

ρ2
ml0

]
(9.23a)

and
H00

0y

Y0
= b+0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

khρml0

[
−2i

khρml0

(
1 +

i

khρml0

)
l2

ρ2
ml0

+

(
1 +

i

khρml0
− 1

(khρml0)2

)
m2

ρ2
ml0

]
(9.23b)

where
ρml0 =

√
m2 + l2 . (9.24)

The total x directed electric field and y directed magnetic field incident on the sphere in the
(m, l) = (0, 0) position of the n = 0 plane are given by

E0
0x =

∞∑

n=−∞
n6=0

E0n
0x + E00

0x , H0
0y =

∞∑

n=−∞
n6=0

H0n
0y +H00

0y (9.25)

where from (9.21)-(9.24)

E0
0x =

∞∑

n=−∞
n6=0

b−n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

[
−2i

khρmln

(
1 +

i

khρmln

)
m2

ρ2
mln

+

(
1 +

i

khρmln
− 1

(khρmln)2

)
l2 + (nd/h)2

ρ2
mln

]
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−
∞∑

n=−∞
n6=0

b+n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

(
1 +

i

khρmln

)
nd/h

ρmln

+ b−0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

khρml0

[
−2i

khρml0

(
1 +

i

khρml0

)
m2

ρ2
ml0

+

(
1 +

i

khρml0
− 1

(khρml0)2

)
l2

ρ2
ml0

]

(9.26a)
and

H0
0y

Y0
=

∞∑

n=−∞
n6=0

b+n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

[
−2i

khρmln

(
1 +

i

khρmln

)
l2

ρ2
mln

+

(
1 +

i

khρmln
− 1

(khρmln)2

)
m2 + (nd/h)2

ρ2
mln

]

−
∞∑

n=−∞
n6=0

b−n

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

(
1 +

i

khρmln

)
nd/h

ρmln

+ b+0

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

khρml0

[
−2i

khρml0

(
1 +

i

khρml0

)
l2

ρ2
ml0

+

(
1 +

i

khρml0
− 1

(khρml0)2

)
m2

ρ2
ml0

]
.

(9.26b)
Note that the terms with the coefficients b−n [b+n] in (9.26a) [(9.26b)] represent the x [y]
directed electric [magnetic] field incident on the reference sphere from the electric [magnetic]
dipoles in all the spheres of the array other than in the self- (z = 0) plane, while the term
with the coefficient b−0 [b+0] represents the x [y] directed electric [magnetic] field incident on
the reference sphere from the electric [magnetic] dipoles in all the spheres of the self-plane
other than the reference sphere itself. The terms with the coefficient b+n [b−n] in (9.26a)
[(9.26b)] – the “cross terms” – represent the electric [magnetic] field incident on the reference
sphere from the magnetic [electric] dipoles of all the spheres of the array. There are no cross
terms from dipoles in the self-plane.

We now assume that the array is excited by a traveling wave in the z direction with real
propagation constant β. Then the constants b−n and b+n in (9.26) are equal to b−0 and b+0,
respectively, apart from a phase shift given by

b−n = b−0 einβd, b+n = b+0 einβd . (9.27)

Substituting (9.27) in (9.26), using [from (9.20)] b−0 = S−E
0
0x and b+0 = S+H

0
0y/Y0, and

multiplying by (kh)3 we obtain

(kh)3 = S−

{
∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
−2i

ρmln

(
kh+

i

ρmln

)
m2

ρ2
mln

+

(
(kh)2 +

ikh

ρmln
− 1

ρ2
mln

)
l2 + (nd/h)2

ρ2
mln

]
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− q
∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
nd/h

ρmln

+

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

ρml0

[
−2i

ρml0

(
kh +

i

ρml0

)
m2

ρ2
ml0

+

(
(kh)2 +

ikh

ρml0
− 1

ρ2
ml0

)
l2

ρ2
ml0

]}

(9.28a)
and

(kh)3 = S+

{
∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
−2i

ρmln

(
kh+

i

ρmln

)
l2

ρ2
mln

+

(
(kh)2 +

ikh

ρmln
− 1

ρ2
mln

)
m2 + (nd/h)2

ρ2
mln

]

− 1

q

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
nd/h

ρmln

+
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

ρml0

[
−2i

ρml0

(
kh+

i

ρml0

)
l2

ρ2
ml0

+

(
(kh)2 +

ikh

ρml0
− 1

ρ2
ml0

)
m2

ρ2
ml0

]}

(9.28b)
where

q =
b+0

b−0
(9.29)

and ρmln and ρml0 are given by (9.22) and (9.24), respectively. As was done in Section 8
with the corresponding equations for the 2D magnetodielectric sphere arrays, by eliminating
q from (9.28a) and (9.28b) the kd–βd equation is obtained that determines the normalized
traveling wave propagation constant βd in terms of kh, d/h, and the normalized magnetodi-
electric sphere electric and magnetic dipole scattering coefficients S− and S+. This will be
done below [see (9.81)-(9.84)].

We first note that (9.28a) and (9.28b), without the cross-term sums multiplied by −q
and −1/q, are uncoupled and are simply the kd–βd equations for 3D arrays of electric and
magnetic dipoles transverse to the array axis, respectively, and furthermore, that these two
equations are then identical apart from the scattering coefficient, S− or S+. (Note that the
self-plane sums in (9.28a) and (9.28b) are identical as can be seen by interchanging the indices
m and l.) Hence the non-cross-term summations in (9.28a) and (9.28b) are identical with the
sums in (5.20) treated in Section 5 dealing with 3D arrays of electric dipoles perpendicular
to the array axis. Thus from (5.65) and (5.68) we have

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

[
−2i

ρmln

(
kh +

i

ρmln

)
m2

ρ2
mln

+

(
(kh)2 +

ikh

ρmln
− 1

ρ2
mln

)
l2 + (nd/h)2

ρ2
mln

]
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+
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikhρml0

ρml0

[
−2i

ρml0

(
kh+

i

ρml0

)
m2

ρ2
ml0

+

(
(kh)2 +

ikh

ρml0
− 1

ρ2
ml0

)
l2

ρ2
ml0

]

= −2πi(kh) − 2πkh
sin kd

cos βd− cos kd

− 4π
∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

+ 2πi(kh)2
∞∑

l=1

H
(1)
0 (lkh)− 8

∞∑

l=1

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)

+ 4 kh Cl2(kh) + 4 Cl3(kh) + iπ(kh)2 − i
2

3
(kh)3 (9.30)

with the Clausen functions Cl2 and Cl3 defined and approximated by equations (D.8), and
with 0 < kh < 2π.

Now let us treat the sum in (9.28a) and (9.28b) multiplied by −q and −1/q,

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
nd/h

ρmln

=
∞∑

n=−∞
n6=0

einβd sgn(n)
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
|n|d/h
ρmln

. (9.31)

This sum is proportional to the y directed magnetic field incident on the (0, 0, 0) sphere
scattered from the x directed electric dipoles of all the other spheres in the array, or to the x
directed electric field incident on the (0, 0, 0) sphere scattered from the y directed magnetic
dipoles of all the other spheres in the array. We use the Floquet mode method to help
transform this slowly convergent sum to a rapidly convergent form, proceeding similarly
to the way we used it in Section 7. We let H0

y (P ) be the y component of the magnetic
field radiated by all the x directed electric dipoles in the n = 0 plane at a general point in
space P = (x, y, z), z 6= 0, an expression for which is available from the b−n term of (9.2b).
We establish a local spherical polar coordinate system with origin at the sphere located
at (x, y, z) = (mh, lh, 0) and with θ(m, l, P ) the polar angle from the z axis to the vector
r(m, l, P ) from (mh, lh, 0) to the field point P . The distance r(m, l, P ) from (mh, lh, 0) to
P is

r(m, l, P ) =
√

(x−mh)2 + (y − lh)2 + z2 (9.32)

and the unit vector r̂(m, l, P ) is

r̂(m, l, P ) =
r(m, l, P )

r(m, l, P )
=

(x−mh) x̂ + (y − lh) ŷ + z ẑ

r(m, l, P )
(9.33)

so that
cos θ(m, l, P ) = r̂(l,m, P ) · ẑ =

z

r(m, l, P )
(9.34)
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sin θ(m, l, P ) =
√

1 − cos2 θ(m, l, P ) =

√
(x−mh)2 + (y − lh)2

r(m, l, P )
(9.35)

φ(m, l, P ) = tan−1

(
r(m, l, P ) · ŷ
r(m, l, P ) · x̂

)
=

y − lh

x−mh
(9.36)

cosφ(m, l, P ) =
x−mh√

(x−mh)2 + (y − lh)2
(9.37)

and

sinφ(m, l, P ) =
y − lh√

(x−mh)2 + (y − lh)2
. (9.38)

Then [see (9.2b), (9.18), and (9.19)]

[sinφ(m, l, P ) θ̂(m, l, P )]y = cos θ(m, l, P ) sin2(m, l, P )

=
z

r(m, l, P )

(y −mh)2

(x−mh)2 + (y − lh)2
(9.39)

and
[cos θ(m, l, P ) cosφ(m, l, P ) φ̂(m, l, P )]y = cos θ(m, l, P ) cos2(m, l, P )

=
z

r(m, l, P )

(x−mh)2

(x−mh)2 + (y − lh)2
(9.40)

so that

[sinφ(m, l, P ) θ̂(m, l, P )]y + [cos θ(m, l, P ) cosφ(m, l, P ) φ̂(m, l, P )]y =
z

r(m, l, P )
(9.41)

and hence referring to (9.2b)

H0
y (P )

Y0

= b−0

∞∑

m=−∞

∞∑

l=−∞

eikr(m, l, P )

kr(m, l, P )

(
1 +

i

kr(m, l, P )

)
z

r(m, l, P )
. (9.42)

For P0 = (0, 0, nd)

H0
y (0, 0, nd)

Y0
= b−0 sgn(n)

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

khρmln

(
1 +

i

khρmln

)
|n|d/h
ρmln

(9.43)

where
ρmln =

√
m2 + l2 + (nd/h)2 (9.44)

and so in (9.31)

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
|n|d/h
ρmln

=
(kh)3

b

H0
y (0, 0, |n|d)

Y0
. (9.45)
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Now H0
y (x, y, z) can be expressed in terms of a plane wave spectrum by

H0
y (x, y, z)

Y0
=

∞∫

−∞

∞∫

−∞

B(kx, ky)e
i(kxx+ kyy + kzz) dkxdky, kz =

√
k2 − k2

x − k2
y (9.46)

where kz is positive real (positive imaginary) according as k2 > (<) k2
x + k2

y . Because of the
periodicity of the array in the x and y directions,

H0
y (x+ h, y, z) = H0

y (x, y, z) , H0
y (x, y + h, z) = H0

y (x, y, z) . (9.47)

It follows by taking the inverse Fourier transform of (9.46) and inserting into (9.47) that

eikxh = 1 , eikyh = 1 (9.48)

and hence

kxh = 2πm, m = 0,±1,±2, · · · , kyh = 2πl, l = 0,±1,±2, · · · (9.49)

so that
H0
y (x, y, z)

Y0
=

∞∑

m=−∞

∞∑

l=−∞

Bml ei(2π/h)(mx+ ly) eikmlz (9.50)

where
kml =

√
k2 − (2πm/h)2 − (2πl/h)2 (9.51)

with kml positive real (positive imaginary) according as (kh)2 > (<) (2π)2(m2 + l2). It
remains to find the unknown Floquet mode expansion coefficients Bml. As in Section 7 we
will employ two different methods for obtaining the coefficients, one based on the analysis of
an integral, and the other on the Hertz vector potential. We begin with the integral method.

By inverting (9.50)

Bmle
ikmlz =

1

h2

h/2∫

−h/2

h/2∫

−h/2

H0
y (x, y, z)

Y0
e−i(2π/h)(mx+ ly) dxdy (9.52)

so that with (9.42)

Bml eikmlz

=
b−0

h2

∞∑

m′=−∞

∞∑

l′=−∞

h/2∫

−h/2

h/2∫

−h/2

eikr(m′,l′,P )

kr(m′, l′, P )

(
1 +

i

kr(m′, l′, P )

)
z

r(m′, l′, P )
e−i(2π/h)(mx+ly) dxdy

(9.53)
where

r(m′, l′, P ) =
√

(x−m′h)2 + (y − l′h)2 + z2 . (9.54)

Since Bml is independent of z, if the LHS of (9.53) is expanded for small z

Bmle
ikmlz |z|<<1∼ Bml

(
1 + ikmlz −

k2
ml

2
z2

)
. (9.55)
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We can then obtain an expression for Bml by investigating the behavior of the RHS of (9.53)
for |z| << 1 and equating coefficients of z2. (We focus on coefficients of z2 rather than on
coefficients of z because terms in z in the expansion of the RHS of (9.53) for |z| << 1 can
come from all terms of the double summation whereas, as we show directly, terms in z2 can
come only from the (m′, l′) = (0, 0) term of the double summation.)

First we show that the terms in the double summation in (9.53) for which (m′, l′) 6= (0, 0)
cannot contribute a term in z2 for |z| << 1. For, letting

A2 = (x−m′h)2 + (y − l′h)2 (9.56)

so that
r(m′, l′, P ) =

√
A2 + z2 (9.57)

and assuming that z2 << A2,

eikr(m
′, l′, P )

kr(m′, l′, P )

(
1 +

i

kr(m′, l′, P )

)
z

r(m′, l′, P )
=

eik
√
A2 + z2

k
√
A2 + z2

(
1 +

i

k
√
A2 + z2

)
z√

A2 + z2

≈ zeikA
(

1 +
ikz2

2A

)[
1 +

i

kA

(
1 − z2

2A2

)]
1

kA

(
1 − z2

2A2

)
(9.58)

so that there are no terms in z2 from the terms in the double summation for which (m′, l′) 6=
(0, 0). Thus a term in z2 can come only from the (m′, l′) = (0, 0) term

b−0

h2

h/2∫

−h/2

h/2∫

−h/2

eikr(0, 0, P )

kr(0, 0, P )

(
1 +

i

kr(0, 0, P )

)
z

r(0, 0, P )
e−i(2π/h)(mx+ ly) dxdy (9.59)

where
r(0, 0, P ) =

√
x2 + y2 + z2 . (9.60)

In cylindrical polar coordinates ρ =
√
x2 + y2, φ = tan−1(y/x), the (m′, l′) = (0, 0) term is

approximately

b

kh2

h/2∫

0

2π∫

0

eik
√
ρ2 + z2

√
ρ2 + z2

(
1 +

i

k
√
ρ2 + z2

)
z√

ρ2 + z2
e−i(2π/h)(m cosφ+ l sinφ)ρ ρ dρdφ .

(9.61)
We can obtain a term in z2 for |z| << 1 only in the vicinity of ρ = 0. We expand the
trigonometric exponential in (9.61) in a power series in ρ, and note that terms containing
odd powers of cos φ and sinφ integrate to 0 over the interval φ = [0, 2π], to obtain

e−i(2π/h)(m cosφ+ l sinφ)ρ ≈ 1 − 1

2
(2π/h)2

(
m2 cos2 φ+ l2 sin2 φ

)
ρ2 + · · · . (9.62)

We then substitute (9.62) in (9.61), perform the φ integration, systematically integrate
analytically all the resulting indefinite integrals in ρ by making the change of variables

u =
√
ρ2 + z2, du =

ρ dρ√
ρ2 + z2

(9.63)
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and using integrals tabulated in [18, eqs. 2.324,2.325], evaluate the integrals at the lower
range of integration, u = |z|, and collect terms in z2. (There is no contribution to terms
in z2 from the upper end of the interval of integration u =

√
(h/2)2 + z2.) It is found that

there is no contribution to terms in z2 from terms higher than ρ2 in the expansion of the
trigonometric exponentials. The end result is that the z2 term of the expansion of the RHS
of (9.52) in a power series in z for |z| << 1 is

2πib−0

h2

(kh)2 − (2π)2(m2 + l2)

(kh)2
z2 . (9.64)

But then, equating coefficients of z2 in (9.55) and (9.64) we obtain the coefficients of the
Floquet mode expansion (9.50)

Bml =
2πib−0

h2k2
ml

(kh)2 − (2π)2(m2 + l2)

(kh)2
=

2πib−0

(kh)2
. (9.65)

Before continuing we will give an alternate derivation of the Floquet mode expansion
coefficients Bml based on the Hertz vector potential. The magnetic field of an x directed
electric dipole at the origin of a Cartesian coordinate system is given by the curl of the Hertz
vector potential for the field of an x directed electric dipole [see (4.48)]

C

(
∇×eikr

kr
x̂

)
. (9.66)

The proportionality constant C can be found easily by expanding (9.66) in spherical co-
ordinates (using, for example, [22, Appendix 1, eqs. 117, 151]) and equating the 1/(kr)
term of the φ component of the field with Y0b−0 exp(ikr)/(kr) cos θ cos φ [see (9.2b)] thereby
obtaining

C = − iY0

k
b−0 . (9.67)

From (9.66) the y component of the magnetic field radiated by an x directed electric dipole
at the origin of a Cartesian coordinate system is given by

C

(
∇×eikr

kr
x̂

)

y

= C
∂

∂z

eikr

kr
(9.68)

referring to [22, Appendix 1, eq. 51]. Now from (3.30) and (3.42) the field radiated by the
acoustic monopoles located in the plane z = 0 at the locations (x, y) = (mh, lh), m, l =
0, ±h, ±2h, · · · , each of which radiates a field equal to exp(ikr)/(kr), is

∞∑

m=−∞

∞∑

l=−∞

B0
ml ei(2π/h)(mx+ ly) eikmlz (9.69)

where

B0
ml =

2πi

kh2kml
(9.70)
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and
kml =

√
k2 − (2πm/h)2 − (2πl/h)2 (9.71)

with kml positive real or positive imaginary. Hence from (9.68) the y component of the
magnetic field radiated by the plane z = 0 of x directed electric dipoles is equal to

C
∞∑

m=−∞

∞∑

l=−∞

B0
ml ei(2π/h)(mx+ ly) d

dz
eikmlz

= C
∞∑

m=−∞

∞∑

l=−∞

B0
ml (ikml) ei(2π/h)(mx+ ly) eikmlz . (9.72)

The same field is also given by the Floquet mode expansion (9.50) multiplied by Y0. Hence,
equating (9.50) with (9.72) we see that the coefficients Bml in (9.50) are given by

Bml =
C

Y0
B0
mlikml = − i

k

2πib−0

kh2kml
ikml =

2πib−0

(kh)2
(9.73)

in agreement with (9.65).
Now that we have derived the Floquet mode expansion coefficients Bml by two indepen-

dent methods, we have from (9.45), (9.50), (9.65) or (9.73), and (9.51),

∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
|n|d/h
ρmln

=
(kh)3

b−0

2πib−0

(kh)2

∞∑

m=−∞

∞∑

l=−∞

ei|n|(d/h)
√

(kh)2 − (2π)2(m2 + l2)

= 2πi(kh) ei|n|kd + 2πi(kh)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−|n|(d/h)
√

(2π)2(m2 + l2) − (kh)2
(9.74)

for 0 < kh < 2π. But then in (9.31)

∞∑

n=−∞
n6=0

einβd sgn(n)
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
|n|d/h
ρmln

= 2πi(kh)
∞∑

n=1

2i sin(nβd)


einkd +

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2


 .

(9.75)
Thus, using (D.6),

∞∑

n=−∞
n6=0

einβd
∞∑

m=−∞

∞∑

l=−∞

eikhρmln

ρmln

(
(kh)2 +

ikh

ρmln

)
nd/h

ρmln
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= 2πkh
sin βd

cos βd− cos kd

− 4π kh
∞∑

n=1

sin(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2
. (9.76)

Substituting (9.30) and (9.76) in (9.28a) and (9.28b) we can then write these equations in
the form

(kh)3 = S− {<− + i=−} (9.77a)

and
(kh)3 = S+ {<+ + i=+} (9.77b)

where, assuming that q is real, an assumption that is verified shortly below [see the comment
following 9.84)], <−, the real part of the quantity within the brackets of (9.28a) with the
original summations replaced by the new expressions we have derived, is

<− = −2πkh
sin kd

cos βd− cos kd

− 4π
∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− 2π(kh)2

∞∑

l=1

Y0(lkh) − 8
∞∑

l=1

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)

− q

(
2πkh

sinβd

cos βd− cos kd

− 4π kh
∞∑

n=1

sin(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

)

+ 4 kh Cl2(kh) + 4 Cl3(kh) ; (9.78a)

=−, the imaginary part of the quantity within the brackets of (9.28a), is

=− = −2πkh+ 2π(kh)2
∞∑

l=1

J0(lkh) + π(kh)2 − 2

3
(kh)3 ; (9.78b)

<+, the real part of the quantity within the brackets of (9.28b) with the original summa-
tions replaced by the rapidly convergent expressions we have derived, equals <− with 1/q
substituted for q; and =+, the imaginary part of the quantity within the brackets of (9.28b),
equals =−. Using (B.11)

=− = =+ = −2πkh+ 2π(kh)2

(
−1

2
+

1

kh

)
+ π(kh)2 − 2

3
(kh)3 = −2

3
(kh)3 (9.79)
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which, together with (9.77), by the argument used above in Section 4 [see (4.59)-(4.61)]
implies that

|S−| =
3

2
sinψ− (9.80a)

and

|S+| =
3

2
sinψ+ (9.80b)

where ψ− and ψ+ are the phases of the scattering coefficients S− and S+, respectively.
The properties of the scattering coefficients (9.80) were derived independently in [4] from
reciprocity and power conservation principles, and our obtaining them here thereby serves
as an important check on the validity of our analysis.

To obtain the kd–βd equation determining βd as a function of kd, d/h, and the scattering
coefficients S− and S+, we write (9.77) as

(kh)3 = S−

{
Σ1 − qΣ2

}
(9.81a)

and

(kh)3 = S+

{
Σ1 −

1

q
Σ2

}
(9.81b)

where, from (9.78) and (9.79),

Σ1 = −2πkh
sin kd

cos βd− cos kd

− 4π
∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− 2π(kh)2

∞∑

l=1

Y0(lkh) − 8
∞∑

l=1

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)

+ 4 kh Cl2(kh) + 4 Cl3(kh) − i
2

3
(kh)3 (9.82)

and

Σ2 = 2π kh
sinβd

cosβd− cos kd

− 4π kh

∞∑

n=1

sin(nβd)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2
. (9.83)

The proof given in Section 8 [see (8.48) to (8.51)] that equations (8.44a) and (8.44b) imply
(8.41) and (8.43) applies equally well to (9.81a) and (9.81b) so that, as we noted in Section
8, (9.80a) and (9.80b) must be satisfied by the elements of any 3D periodic array that
supports a lossless traveling wave if the elements can be modeled by pairs of crossed electric
and magnetic dipoles at right angles such that an incident electric (magnetic) field at the
element center in the direction of the electric (magnetic) dipole excites only the electric
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(magnetic) dipole field. Solving for −q in (9.81a) and (9.81b) and equating the resulting
expressions we obtain the kd–βd equation

−q =
(kh)3 − S−Σ1

S−Σ2

=
S+Σ2

(kh)3 − S+Σ1

. (9.84)

The proof given in Section 8 [see (8.53)] that the kd–βd equation is an equation of real
quantities applies here as well. It is simple to solve (9.84) numerically for βd given values
of kd, kh, S−, and S+, using, for example, a simple search procedure with secant algorithm
refinement.

To facilitate calculations of Σ1 and Σ2 we note a rapidly convergent expression for the
slowly convergent Schlömilch series

∑
Y0(lkh) is given by (B.12), and that all series involving

negative exponentials and the modified Bessel function K0 (which decays exponentially)
converge very rapidly so that only a few terms of these series gives sufficient accuracy.
Alternately, approximate closed form expressions for the summations involving negative
exponentials can be obtained by first performing the summation over n from 1 to ∞ using
(D.4) and then including only terms in the summations over m and l for which |m| ≤
1 and |l| ≤ 1. The sum of negative exponentials in Σ1 is identical to the sum of negative
exponentials in (5.72) and so (5.76) gives the approximate closed form expression for this
sum which we repeat here

∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

≈ 2
(2π)2 − 2(kh)2

√
(2π)2 − (kh)2

e−(d/h)r1 cosβd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1

+ 4
(2π)2 − (kh)2

√
8π2 − (kh)2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2
(9.85)

where r1 =
√

(2π)2 − (kh)2, and r2 =
√

8π2 − (kh)2. The corresponding approximate closed
form expression for the sum of negative exponentials in Σ2 is

∞∑

n=1

sin(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

≈ 4 sin βd

(
e−(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1
+

e−(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2

)

(9.86)
where r1 =

√
(2π)2 − (kh)2, and r2 =

√
8π2 − (kh)2.

Since some of the terms in the expression (9.82) for Σ1 become singular as kh approaches
2π it is worthwhile to obtain the limiting value of Σ1 as kh→ 2π. Comparing (9.82) with the
expression (5.72) for < in our treatment of 3D arrays of electric dipoles perpendicular to the
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array axis, we see that the two expressions are identical apart from the term −i(2/3)(kh)3

in (9.82). We thus obtain immediately from (5.82) that

lim
kh→2π

Σ1 = −(2π)2 sin kd

cos βd− cos kd

− 4π(2π)
∞∑

n=1

cos(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

(m2 − 1)
e−2πn(d/h)

√
m2 + l2 − 1

√
m2 + l2 − 1

− 2π(2π)2

[
− 1

π

(
γ + ln

1

2

)
− 2

∞∑

l=2

(
1

2π
√
l− 1

− 1

2πl

)]

+ 4(2π)2
∞∑

m=2

(m2 − 1)K0

(
2πl

√
m2 − 1

)
+ 4 Cl3(2π) − i

2

3
(2π)3 (9.87)

where γ is the Euler constant, Cl3(2π) is given by (D.10), and Cl2(2π) has been set equal
to 0 [see (D.9)]. The expression (9.83) for Σ2 simplifies at kh = 2π. Using (D.6) we see
that the contribution of the terms in the sum of negative exponentials for which (m, l) =
(0,±1), (±1, 0),

− 4πkh
∞∑

n=1

sin(nβd)
∞∑

m=−∞
|m|+|l| =

∞∑

l=−∞
1

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2 kh=2π
=

16π2 sin βd

cos βd− 1
. (9.88)

Hence

Σ2
kh=2π

= 4π2 sinβd

cosβd− cos kd
+ 16π2 sinβd

cos βd− 1

− 8π2

∞∑

n=1

sin(nβd)

∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−2πn(d/h)
√
m2 + l2 − 1 . (9.89)

Referring to (9.86) we see that

− 8π2

∞∑

n=1

sin(nβd)
∞∑

m=−∞
|m|+|l| >

∞∑

l=−∞
1

e−2πn(d/h)
√
m2 + l2 − 1 (9.90)

in (9.89) can be approximated by

− 32π2 sinβd
e−2πd/h

1 − 2 cos βd e−2πd/h + e−4πd/h
. (9.91)
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9.2 EFFECTIVE PERMITTIVITY AND PERMEABILITY OF

THE ARRAY

So far in this report, apart from a brief remark at the end of Section 5 relevant to this sub-
section, we have focused exclusively on obtaining the kd–βd equations for the various arrays
considered. If the magnetodielectric sphere elements of a 3D periodic array are sufficiently
close together so that

βd << 1 (9.92)

then the array can be regarded macroscopically as a medium (which we will refer to as the
array medium) with effective or bulk relative permittivity εeffr and effective relative perme-
ability µeff

r that determine the propagation constant of a traveling wave in the direction of
the array axis perpendicular to the orientations of the crossed electric and magnetic dipoles
by which the spheres are modeled.8 We will now show how εeffr and µeff

r can be obtained
from the parameters available to us in solving the kd–βd equation (9.84). To begin with,
the propagation constant β can be expressed in terms of εeffr and µeff

r by the equation

βd

kd
=
√
µeff

r εeffr . (9.93)

For a 3D periodic array of magnetodielectric spheres with εr = µr, the effective permittivity
and permeability of the array medium are equal and we obtain immediately from (9.93)

εeffr = µeff
r = ±βd

kd
(9.94)

where plus (minus) is taken accordingly as the group velocity is positive (negative).
If εr 6= µr we proceed as follows. The magnetic and dielectric properties of a dipolar

medium are characterized by a magnetic polarization or magnetization M and an electric
polarization P where M (P) is the magnetic (electric) dipole moment per unit volume of
the medium. For the array medium with βd << 1, we can approximate M and P by

M = Nm (9.95a)

P = Np (9.95b)

where N is the number of magnetic (electric) dipoles per unit volume contributing to M (P)
and m (p) is the magnetic (electric) moment of each elementary magnetic (electric) dipole.
For a d× h× h rectangular lattice,

N =
1

dh2
. (9.96)

8It should be noted that in general the array medium is anisotropic and that εeffr and µeff
r do not determine

the propagation of waves traveling in directions other than along the array axis. If the array elements
are homogeneous magnetodielectric spheres then the directions of the electric and magnetic dipoles are
established by the traveling wave, and as the number of spheres per unit volume becomes large (kd << 1 as
well as βd << 1) the array medium becomes increasingly isotropic. We have, however, called attention to
the fact that our analyses for arrays of magnetodielectric spheres apply equally well to any array elements
that can be modeled by a pair of uncoupled crossed electric and magnetic dipoles. If the directions of the
electric and magnetic dipoles of the array elements are fixed independently of the traveling wave, as they
are for split-ring resonators for example, then the array medium is anisotropic no matter how closely spaced
the elements.
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Assuming the magnetization and polarization are related to the average magnetic and electric
field, H and E, by the scalar constitutive equations [20, sec. 1.6], we have

M = (µeff
r − 1)H (9.97a)

and
P = (εeffr − 1) ε0E (9.97b)

where ε0 is the permittivity of free space. (Since the dipoles are excited by a traveling wave
along the array axis there will be a phase variation of m, p, H, and E in the direction of
the array axis. However we assume that the volume we are considering is both large enough
to contain a large number of dipoles and narrow enough so that there is only a small phase
variation (βd << 1) of the local incident fields and electric and magnetic dipoles inside the
volume. We can then, if we like, regard m (p) as the average moment of the magnetic
(electric) dipoles in the volume and H (E) as the average magnetic (electric) field.) As we
have noted above [see the remark just preceding (9.21)], the symmetry of the array results
in the incident magnetic (electric) field at each magnetic (electric) dipole being in the same
direction as the dipole in agreement with (9.97) above. In (9.95) m (p) is in the same
direction as M (P), and in (9.97) M (P) is in the same or opposite direction as H (E)
accordingly as µeff

r − 1 (εeffr − 1) is positive or negative, respectively. If in (9.95a) and (9.97a)
((9.95b) and (9.97b)) M, m, H (P, p, E) are written as M, m, H (P, p, E) respectively,
multiplied by unit vectors, then the unit vectors are identical and cancel. We can therefore
replace the vector quantities in (9.95) and (9.97) by their respective scalar quantities and
obtain

M

P
=
m

p
=

(µeff
r − 1)

(εeffr − 1)ε0

H

E
. (9.98)

If we assume that the ratio of the average magnetic and electric fields can be approximated
by the ratio of the magnetic and electric fields of the traveling plane wave (the effective
admittance of the array medium), then

H

E
= ±

√
εeff

µeff
= ±

√
ε0εeffr
µ0µeff

r

(9.99)

where µ0 is the permeability of free space and the plus (minus) sign corresponds to µeff
r and

εeffr both positive (negative) [24]. Hence

m

p
= ± µeff

r − 1

(εeffr − 1)ε0

√
ε0 εeffr
µ0 µeff

r

= ±µ
eff
r − 1

εeffr − 1

√
εeffr
µeff

r

c . (9.100)

The ratio of m to p can be related to the parameter q defined by (9.29) which is known
as a result of solving the kd–βd equation (9.84). We do this by comparing the magnetic
and electric far field multiplied by b+0 and b−0, respectively, with the magnetic far field of
a magnetic dipole of moment m and the electric far field of an electric dipole of moment
p. The magnetic far field multiplied by b+0 is obtained by taking the 1/kr term of the field
multiplied b+n in (9.2b) and dropping all the subscripts yielding

b+0Y0
eikr

kr
r̂ × (ŷ × r̂) (9.101a)
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while the electric far field multiplied by b−0 is obtained by taking the 1/kr term of the field
multiplied b−n in (9.2a) and dropping all the subscripts yielding

b−0
eikr

kr
r̂ × (x̂ × r̂) . (9.101b)

The magnetic far field of a magnetic dipole of magnetic dipole moment mm̂ and the electric
far field of an electric dipole of electric dipole moment p p̂ are given respectively by [25, secs.
9.2, 9.3]

m
k2

4π

eikr

r
r̂ × (m̂× r̂) (9.102a)

and

p
k2

4πε0

eikr

r
r̂ × (p̂ × r̂) . (9.102b)

Letting m̂ = ŷ and p̂ = x̂ and equating (9.101a) with (9.102a) and (9.101b) with (9.102b)
then yields

m =
4πY0

k3
b+0 (9.103a)

and

p =
4πε0
k3

b−0 . (9.103b)

Thus
m

p
=
Y0

ε0

b+0

b−0
=

1

ε0

√
ε0
µ0
q =

q
√
µ0ε0

= c q (9.104)

where q is the real number defined by (9.29) and obtained from (9.84).
From (9.100) we then have

µeff
r − 1

εeffr − 1

√
εeffr
µeff

r

= ± q . (9.105)

Equations (9.93) and (9.105) form a pair of simultaneous equations which can be solved for
the two unknowns εeffr and µeff

r . Letting

R =
βd

kd
(9.106)

we obtain

εeffr =
R(R + q)

1 +R q
(9.107)

and

µeff
r =

R(1 +Rq)

R+ q
. (9.108)

These expressions for the effective permittivity and permeability of the array medium are
easily computed from the values of R and q that are found from solving the transcendental
equation (9.84) for the kd–βd diagram of the array. If there are only electric dipole scattered
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fields (no magnetic dipole scattered fields) of each array element, q = 0 and (9.107)-(9.108)
reduce to

εeffr = R2 (9.109)

and
µeff

r = 1 . (9.110)

Similarly, with only magnetic dipole scattered fields (no electric dipole scattered fields),
q = ∞ and (9.107)-(9.108) give

εeffr = 1 (9.111)

and
µeff

r = R2 . (9.112)

Although we will not be concerned in this report with the practical details of exciting
traveling waves, it is worth noting here that if the relative permittivity and permeability
of the magnetodielectric sphere array elements are equal, then the effective relative permit-
tivity and permeability of the array medium are also equal, and, from (9.99), the effective
admittance of the array medium equals the admittance of free space. It is therefore likely
that it will be easier to excite a lossless traveling wave in a slab of the array medium than
it will be if the relative permittivity and permeability of the magnetodielectric sphere array
elements differ appreciably.

An alternative, more restrictive and thus less satisfactory method of obtaining expressions
for εeffr and µeff

r when both
βd << 1 (9.113a)

and
kd << 1 (9.113b)

is to make use of the Clausius-Mossotti relation [9, sec. 8-1], [21, sec. 2-4]. This method,
unlike the procedure we have described above, makes no use of the solution to the kd–βd
equation (9.84). Since the usual form of the Clausius-Mossotti relation is based on the
assumption of a cubic lattice, we shall apply it only to arrays for which the transverse
element spacing h equals the spacing d in the direction of the array axis. If the inequalities
(9.113) are satisfied, then the array can be regarded macroscopically as a medium with
effective relative permittivity εeffr and effective relative permeability µeff

r that determine the
propagation constant of a traveling wave in the direction of the array axis perpendicular
to the orientations of the crossed electric and magnetic dipoles by which the spheres are
modeled. We will focus on obtaining εeffr because, as will be seen, an expression for µeff

r can
be obtained almost immediately from the expression for εeffr .

We consider the electric polarizability P of a cubic volume of the array medium, taking
the axes of the cube to be parallel to the axes of the cubic array lattice. The polarization of
the array medium is given from the Clausius-Mossotti relation [9, eq. 8-1] as

P = Np = 3
εeff ,CM
r − 1

εeff ,CM
r + 2

ε0E0 (9.114)
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where p is the moment of each electric dipole,9 N is the number of dipoles per unit volume,
and E0 is the local electric field incident on a dipole from all the other dipoles of the array,
both electric and magnetic.For a cubic lattice

N =
1

d3
. (9.118)

If, similarly to what we did above in obtaining (9.98), P, p, and E0 in (9.114) are written as
P, p, and E0, respectively, multiplied by unit vectors, then the unit vectors are identical and
cancel. We can therefore replace the vector quantities in (9.114) by their respective scalar
quantities and obtain

Np

ε0E0
= 3

εeff ,CM
r − 1

εeff ,CM
r + 2

. (9.119)

Solving (9.119) for εeff ,CM
r yields

εeff ,CM
r =

2B + 3

3 −B
(9.120)

with

B =
Np

ε0E0
. (9.121)

We can find p by equating the expression for the far field radiated by an electric dipole of
moment p with the expression for the far field of an electric dipole excited by an incident
field E0 in the direction of the dipole at the center of the dipole. From [20, sec. 8.5 eq. (30)]
the far field radiated by an electric dipole of moment p is

Eθ = − k2p

4πε0

eikr

r
sin θ (9.122)

where θ is the spherical polar angle measured from the direction of the dipole. From the
scattering equation (9.20a) giving the coefficient of exp(ikr)/(kr) in the electric dipole field

9An easy way to derive (9.114) for a cubic lattice is to begin with the constitutive relation D = εE =
ε0E + P so that

P = (ε − ε0)E (9.115)

where E is the macroscopic electric field satisfying Maxwell’s equations, and P can be expressed as

P = Np . (9.116)

To find the local field applied to one dipole from all the other dipoles, remove that one dipole and consider
the free-space cubical cavity formed by surfaces that contain the dipoles adjacent to the one removed dipole.
Outside this cubical cavity approximate the average polarization density P as a continuum of polarization
density. For this continuum containing the small cubical cavity, the electric field at the center of the cavity
(the point where the center of the removed dipole was located) is the local field E0 given by (in the limit
as the maximum breadth of the cavity becomes infinitesimally small—much smaller than a free-space or
traveling-wave wavelength will suffice)

E0 = E + L ·P/ε0 (9.117)

where L is the depolarization dyadic for the center of the cube [26]. It is given by L = I/3, the same value
as inside a spherical cavity [26], [27, sec. 3.3.1]. Thus, E0 = E + P/(3ε0), which combines with (9.115) and
(9.116) to yield (9.114).
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scattered from a dipole in response to the incident field E0 we see that the far scattered field
is, referring to (6.2),

Eθ = − S−E0
eikr

kr
sin θ (9.123)

where, for a magnetodielectric sphere, S− is the normalized electric dipole scattering coeffi-
cient given by [5, eq. (30a)]

S− = − i
3

2
bsc1 (9.124)

with bsc1 the Mie electric dipole scattering coefficient given by [20, sec. 9.25 eq. (11)].
Equating (9.122) and (9.123) then yields

p = − 6πiε0E0b
sc
1

k3
(9.125)

and hence from (9.121) and (9.118)

B = − 6πibsc1
(kd)3

(9.126)

so that the relative permittivity of the array medium is now known from (9.120).
A similar analysis performed for the magnetic dipoles of the array with the magnetization

M, the magnetic dipole moment m, and the incident magnetic field H0, paralleling P, p, and
ε0E0, respectively, gives us an expression for the relative permeability of the array medium

µeff ,CM
r =

2A+ 3

3 −A
(9.127)

with

A = − 6πiasc
1

(kd)3
(9.128)

where asc
1 is the Mie magnetic dipole scattering coefficient given by [20, sec. 9.5 eq. (10)].

The expressions for εeffr and µeff
r that we have obtained by using the Clausius-Mossotti relation

can then be used to obtain an approximate kd–βd equation when the inequalities (9.113)
are satisfied,

βCMd

kd
=

√
εeff ,CM
r µeff ,CM

r . (9.129)

For our arrays of magnetodielectric spheres, it is obvious that the Clausius-Mossotti re-
lations give values of approximate effective permittivity and permeability, and consequently
approximate values for the propagation constant β via (9.129) because all three of these quan-
tities have imaginary parts when B and A are inserted from (9.126) and (9.128), whereas
the exact values of β, and thus effective values of εeffr and µeff

r in (9.107) and (9.108) are
real. Nonetheless, when the inequalities in (9.113) are satisfied, the real parts of the approx-
imate values of βCM, εeff ,CM

r , and µeff ,CM
r , will agree closely with the values of β, εeffr , and

µeff
r , respectively. In the figures of this report showing the effective constitutive parameters

obtained from numerical results, we plot only the real parts of εeff ,CM
r and µeff ,CM

r .
At first sight it appears that the derivation of εeffr and µeff

r in (9.107) and (9.108) is valid
under the sole condition in (9.92) that βd << 1, at least for the direction of propagation
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of the traveling wave (see Footnote 8). However, this condition in (9.92) is not generally
sufficient for the effective admittance equation (9.99) to be an accurate expression for the
ratio of the average electric and magnetic fields. In fact, numerical calculations of εeffr and
µeff

r from (9.107) and (9.108) show that the sign of these effective parameters do not always
agree with the group velocity obtained from the kd–βd diagram. In general, (9.99) is an
accurate expression for H/E only if kd << 1 in addition to βd << 1. Moreover, even for
radially symmetric scatterers, like spheres of homogeneous isotropic material, the electric
admittance

√
ε0εeffr /(µ0µeff

r ) will not determine the reflection and transmission properties for
a plane wave incident upon a flat interface of the array medium (except possibly for normal
incidence) unless kd << 1 as well as βd << 1, that is, if the spatial dispersion is negligible
[15, sec. 5.3]. However, if we ignore this problem of unreliable predictions for oblique plane-
wave incidence upon an interface of the array medium, there are at least two reasons to
prefer the formulas (9.107)-(9.108) for the effective permittivity and permeability of the
array medium to the Clausius-Mossotti formulas, (9.120) and (9.127). First, the formulas
(9.107)-(9.108) correctly predict that the values of effective permittivity and permeability
are real for lossless scatterers, whereas the effective permittivity and permeability in (9.120)
and (9.127) generally have imaginary parts as well as real parts even for lossless scatterers.
(Of course, these imaginary parts become small for βd << 1 and kd << 1.) Second, in the
important case of magnetodielectric spheres made of materials with µr = εr, the admittance
equation (9.99) holds exactly, the value of q equals ±1, and

µeff
r = εeffr = ±R = ±βd

kd
(9.130)

with the + or − sign occurring if the group velocity is positive or negative, respectively. If
kd & 1 or βd & 1, the group velocity does not necessarily determine the direction of the
energy flow in the traveling wave with respect to the direction of the phase velocity of the
traveling wave [15, sec. 5.3].

10 “LONGITUDINAL TRAVELING WAVES” ON 2D

AND 3D MAGNETODIELECTRIC SPHERE AR-

RAYS

Our treatment of 2D and 3D magnetodielectric sphere arrays in Sections 8 and 9 has been
based on the assumption that the spheres can be modeled by pairs of electric and magnetic
dipoles, each of the dipoles perpendicular to the array axis along which the traveling wave
supported by the array propagates. In this brief section we address the propagation of
traveling waves with electric or magnetic dipoles parallel to the direction of the array axis.
We have already shown in Sections 6 and 7 that if the traveling wave excites the electric
dipoles of the array in the direction parallel to the array axis, then the scattered electric
field incident on any element of the array has a component only in the direction of the
array axis. In these two previous sections we did not consider the scattered magnetic field
because we were concerned with arrays composed of short wires. Here we will show that if
the traveling wave excites the electric dipoles of the array in the direction parallel to the
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array axis, then the scattered magnetic field incident on any element of the array is zero.
Hence there is no coupling of the longitudinal electric field excited by the traveling wave
with either a transverse electric field or with any magnetic field. Obviously then, there
is no coupling of the longitudinal magnetic field excited by a traveling wave with either a
transverse magnetic field or with any electric field. Our treatment of longitudinal waves on
2D and 3D magnetodielectric sphere arrays thus reduces to our treatment in Sections 6 and
7 of 2D and 3D arrays of electric dipoles parallel to the array axis. The only difference to
be noted is that if (6.79) or (7.76) is used to obtain the kd–βd curves for a 2D or 3D array,
respectively, of longitudinally directed magnetic dipoles, then the phase ψ of the scattering
coefficient S must be obtained from the Mie magnetic dipole scattering coefficient for the
spheres being considered rather than from the Mie electric dipole scattering coefficient.

We now proceed to show that if the traveling wave excites the electric dipoles of a 3D
array of magnetodielectric spheres in the direction of propagation parallel to the array axis,
then the scattered magnetic field incident on any element of the array is zero. To do this we
note first that the magnetic field of a short electric dipole located at the origin of a Cartesian
coordinate system with the z axis in the direction of the dipole is [by taking the curl of (7.2)]

H(r) = − 1

iωµ

eikr

kr

(
ik − 1

r

)
sin θ φ̂ (10.1)

The magnetic field H0mln
0 incident on the reference sphere at the origin from the electric

dipole at the location (x, y, z) = (mh, lh, nd) is then

H0mln
0 = − bn

iωµ

eikrmln0

krmln0

(
ik − 1

rmln0

)
sin θmln0 φ̂mln0 (10.2)

where from (7.4) and (7.7)

rmln0 = h
√
m2 + l2 + (nd/h)2 (10.3)

and

sin θmln0 =
h
√
m2 + l2

rmln0
. (10.4)

Also
φ̂mln0 = − sinφmln0 x̂ + cosmln0 ŷ (10.5)

where from (7.9) and (7.10)

cosφmln0 =
−m√
m2 + l2

(10.6)

sinφmln0 =
−l√
m2 + l2

. (10.7)

But then when H0mln
0 is summed overm and l from −∞ to ∞, both the x and y components

vanish because they are odd functions of m and l. Thus there is no coupling between the
electric field scattered from the z-directed electric dipoles and a magnetic field. For a 2D
array, φ̂ in (10.1) is either x̂ or ŷ, one of the two subscripts m or l is dropped, and the same
conclusion holds.
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Lastly, we note that for 1D arrays, an electric (magnetic) dipole parallel to the array
axis has no magnetic (electric) field along the array axis and thus the traveling waves of
longitudinal electric and magnetic dipoles are also uncoupled on 1D arrays. The kd–βd
equation for either a 1D array of electric or magnetic longitudinal dipoles is given in both
[4] and [6].

11 PARTIALLY FINITE 3D ARRAYS OF ACOUS-

TIC MONOPOLES, ELECTRIC DIPOLES, AND

MAGNETODIELECTRIC SPHERES

In this section we show that the analyses we have performed in Sections 3, 5, and 9 to obtain
the kd–βd equations for infinite periodic 3D arrays of acoustic monopoles, electric dipoles
oriented perpendicular to the array axis, and magnetodielectric spheres with electric and
magnetic dipoles oriented perpendicular to the array axis, can be used to obtain expressions
for the fields of partially finite periodic arrays of these elements (arrays that are finite in
the direction of the array axis and of infinite extent in the directions transverse to the array
axis). The arrays are illuminated by a plane wave propagating in a direction parallel to the
array axis; that is, with the propagation vector of the plane wave normal to the interface
between free space and the array. The procedure followed for these three arrays is identical
and uses a method due to Foldy [28].

11.1 PARTIALLY FINITE 3D ACOUSTIC MONOPOLE AR-

RAY

We investigate the field excited by a plane wave incident from free space on a 3D periodic
array of lossless acoustic monopoles. The array is finite in the direction of the array axis
and infinite in the directions transverse to the array axis. The direction of incidence of
the illuminating plane wave is parallel to the array axis, normal to the interface between
the array and free space. The z axis of a Cartesian coordinate system is taken to be the
array axis and N+1 equispaced planes of acoustic monopoles parallel to the xy plane are
located at z = nd, n = 0, 1, 2, · · · , N . In each plane the monopoles are located at
(x, y) = (mh, lh), m, l = 0, ±1, ±2, · · · . The incident plane wave is

pinc(z) = eikz (11.1)

so that all monopoles in any plane of the array are excited identically. From Section 3 the
field at a point on the array axis (not coinciding with an array element) is

p(z) = eikz +
N∑

n=0

bn

∞∑

m=−∞

∞∑

l=−∞

eikrmlnz

krmlnz
(11.2)

where
rmlnz =

√
(m2 + l2)h2 + (nd− z)2 . (11.3)
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That is, the total field is equal to the incident field plus the sum of the waves scattered from
all the elements of the array. The coefficients bn of the scattered waves are given by

bn = Spn(zn) (11.4)

where S is the scattering coefficient of the monopoles, pn(zn) is the external field incident
on an element in the nth plane, and zn = nd, n = 0, 1, 2, · · · , N , so that from (11.2) and
(11.4) the total field at a point on the array axis other than at an array element is given by

p(z) = eikz +
N∑

n=0

S pn(zn)
∞∑

m=−∞

∞∑

l=−∞

eikrmlnz

krmlnz
. (11.5)

Since all the monopoles in any plane of the array normal to the array axis are excited
identically, pn(zn) is equal to the external field incident on the monopole on the z axis at
z = zn = nd. An expression for pn(zn) is therefore obtained by summing the contribution

of the incident plane wave, eikzn, and the contribution of the fields scattered from all the
array elements other than the (0, 0, zn) element

pn(zn) = eikzn +
N∑

j=0
j 6=n

S pj(zj)
∞∑

m=−∞

∞∑

l=−∞

eikrmljn

krmljn
+ S pn(zn)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikrml

krml
(11.6)

where
rmljn = rml|j−n| =

√
(m2 + l2)h2 + [(j − n)d]2 (11.7)

and
rml =

√
(m2 + l2)h2 . (11.8)

The triple sum in (11.6) is the sum of the scattered waves incident on the (0, 0, nd) element
from the elements in all the planes of the array except the nth plane, and the double sum
is the sum of the scattered waves incident on the (0, 0, nd) monopole from the monopoles
of the nth plane except for the element at (0, 0, nd). (The reason for the notation pn(zn) is
that (11.6) can be extended to be a function of z, pn(z), at any point z on the array axis
not coincident with an array element simply by replacing nd in (11.7) by z.)

Let

σ1(|j − n|d) =
∞∑

m=−∞

∞∑

l=−∞

eikrmljn

krmljn
(11.9)

and

σ2 =

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

eikrml

krml
. (11.10)

Then (11.6) can be written as

pn(zn) = eikzn +
N∑

j=0
j 6=n

S pj(zj) σ1(|j − n|d) + S pn(zn) σ2 (11.11)
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and thus we have a system of N + 1 equations for the N + 1 unknowns pn(zn), n =
0, 1, 2, · · · , N

(1 − Sσ2) p
n(zn) − S

N∑

j=0
j 6=n

σ1(|j − n|d) pj(zj) = eikzn, n = 0, 1, · · · , N . (11.12)

From our treatment of the infinite periodic array of acoustic monopoles in Section 3, rapidly
convergent expressions are available for σ1 and σ2. From (3.11), (3.16), and (3.17) we have

(kh)σ1(|n|d) =
2πi

kh
ei|n|kd+2π

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−|n|(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(11.13)

and from (3.45), (3.46), and (3.49)

(kh)σ2 = 2
∞∑

l=1

[
iπH

(1)
0 (lkh) + 4

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)]

−2 ln

[
2 sin

(
kh

2

)]
+ i(π − kh), 0 < kh < 2π. (11.14)

Using (B.11) and (B.12)

(kh)σ2 = 2πi

{(
−1

2
+

1

kh

)
+ i

(
− 1

π

(
γ + ln

kh

4π

)
− 2

∞∑

l=1

[
1√

(2πl)2 − (kh)2
− 1

2πl

])}

+ 8
∞∑

l=1

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)
−2 ln

[
2 sin

(
kh

2

)]
+i(π−kh) , 0 < kh < 2π . (11.15)

It is then straightforward to write a computer program to solve the system of equations
(11.12) for the values of pn(zn). To calculate the total field at any point on the array axis
(other then at elements of the array) we then use (11.2) which can be written as

p(z) = eikz +

N∑

n=0

S pn(zn) σ1(|nd− z|), z 6= nd (11.16)

with σ1(|nd − z|) given by (11.9) with j and n replaced by n and z/d, respectively. The
rapidly convergent expression (11.13) is used for calculating σ1(|z− nd|) with n replaced by
n− z/d.

Given values of p(z) we can calculate the reflection coefficient of the wave scattered
back in the negative z direction for z < 0 as well as the transmission coefficient of the
wave traveling in the positive z direction for z > Nd. Since the amplitude of the plane
wave incident on the partially finite array is 1, the reflection coefficient, R, is the complex

coefficient of the wave e−ikz for z < 0 with R obtained from the equation

R = p(z) eikz, z < 0 . (11.17)
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In practice z should not be chosen too close to the origin in order for the transient scattered
waves to die out, say z/d < −10. The square of the magnitude of the transmission coefficient,
|T |2, is, of course, equal to 1− |R|2, since the array is assumed to be lossless. If the complex
transmission coefficient is desired, it can be obtained from the equation

T = [p(z) + eikz] e−ikz, z > Nd. (11.18)

In practice, z should not be chosen too close to the end of the array at z = Nd, say
z/d > N + 10.

11.2 PARTIALLY FINITE 3D ARRAY OF ELECTRIC DIPOLES

We investigate the field excited by a plane wave incident from free space on a 3D periodic
array of lossless short electric dipoles. The array is finite in the direction of the array axis
and infinite in the directions transverse to the array axis. The direction of incidence of
the illuminating plane wave is parallel to the array axis, normal to the interface between
the array and free space. The x axis of a Cartesian coordinate system is taken to be the
array axis and N+1 equispaced planes parallel to the yz plane of z-directed electric dipoles
are located at x = nd, n = 0, 1, 2, · · · , N . In each plane the dipoles are centered
at (y, z) = (lh,mh), l,m = 0, ±1, ±2, · · · . Our procedure parallels that used in our
treatment of a finite 3D array of acoustic monopoles. The electric field vector of the incident
plane wave illuminating the array from the left is

Ez,inc(x) = eikx (11.19)

so that all dipoles in any plane of the array are excited identically. As shown in Section 5,
the electric field at a point on the array axis has a z-component only. Hence, at a point on
the array axis not coinciding with an array element, the total electric field is given by [see
(5.20)]

Ez(x) = eikx +
1

(kh)3

N∑

n=0

bn

∞∑

l=−∞

∞∑

m=−∞

eikhρlmnx

ρlmnx

[
−2i

ρlmnx

(
kh+

i

ρlmnx

)
m2

ρ2
lmnx

+

(
(kh)2 +

ikh

ρlmnz
− 1

ρ2
lmnx

)
l2 + [(nd− x)/h]2

ρ2
lmnx

]
(11.20)

where
ρlmnx =

√
l2 +m2 + [(nd− x)/h]2 . (11.21)

That is, the total field is equal to the incident field plus the sum of the waves scattered from
all the elements of the array. The coefficients bn of the scattered waves are given by

bn = SEn
z (xn) (11.22)

where S is the scattering coefficient of the dipoles, En
z (xn) is the external electric field incident

on an element in the nth plane, and xn = nd, n = 0, 1, 2, · · · , N , so that from (11.20) and
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(11.22) the total electric field at a point on the array axis not coinciding with an array
element is

Ez(x) = eikx +
1

(kh)3

{
N∑

n=0

S En
z (xn)

∞∑

l=−∞

∞∑

m=−∞

eikhρlmnz

ρlmnx

[
−2i

ρlmnx

(
kh +

i

ρlmnx

)
m2

ρ2
lmnz

+

(
(kh)2 +

ikh

ρlmnz
− 1

ρ2
lmnx

)
l2 + [(nd− x)/h]2

ρ2
lmnx

]}
. (11.23)

Since all the dipoles in any plane of the array of the array normal to the array axis are
excited identically, En

z (xn) is equal to the external field incident on the dipole on the x axis
at x = xn = nd. An expression for En

z (xn) is therefore obtained by summing the contribution

of the incident plane wave, eikxn, and the contribution of the fields scattered from all the
array elements other than the (xn, 0, 0) dipole

En
z (xn) = eikxn +

1

(kh)3

{
N∑

j=0
j 6=n

S Ej
z(xj)

∞∑

l=−∞

∞∑

m=−∞

eikhρlmjn

ρlmjn

[
−2i

ρlmjn

(
kh+

i

ρlmjn

)
m2

ρ2
lmjn

+

(
(kh)2 +

ikh

ρlmjn
− 1

ρ2
lmjn

)
l2 + [(j − n)d/h)]2

ρ2
lmjn

]

+ S En
z (xn)

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

eikhρlm

ρlm

[
−2i

ρlm

(
kh +

i

ρlm

)
m2

ρ2
lm

+

(
(kh)2 +

ikh

ρlm
− 1

ρ2
lm

)
l2

ρ2
lm

]}

(11.24)
where

ρlmjn = ρlm|j−n| =
√
l2 +m2 + [(j − n)d/h]2 (11.25)

and
ρlm =

√
l2 +m2 . (11.26)

The triple sum in (11.24) is the sum of the scattered waves from the dipoles in all the planes
of the array except the nth plane, and the double sum is the sum of the scattered waves
from the dipoles of the nth plane except for the element at (nd, 0, 0). (The reason for the
notation En

z (xn) is that (11.24) can be extended to be a function of x, En
z (x), at any point

x on the array axis not coincident with an array element simply by replacing nd in (11.25)
by x.)

Let

σ1(|j − n|d) =
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∞∑
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eikhρlmjn

ρlmjn
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(
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i
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+

(
(kh)2 +
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− 1
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)
(l2 + [(j − n)d/h]2

ρ2
lmjn

]
(11.27)
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and

σ2 =

∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

eikhρlm

ρlm

[
−2i

ρlm

(
kh+

i

ρlm

)
m2

ρ2
lm

+

(
(kh)2 +

ikh

ρlm
− 1

ρ2
lm

)
l2

ρ2
lm

]
. (11.28)

Then (11.24) can be written as

En
z (xn) = eikxn +

1

(kh)3




N∑

j=0
j 6=n

SEj
z(xj) σ1(|j − n|d) + SEn

z (xn) σ2


 (11.29)

and thus we have a system of N + 1 equations for the N + 1 unknowns En
z (xn), n =

0, 1, 2, · · · , N

[
1 − Sσ2/(kh)

3
]
En
z (xn)−

S

(kh)3

N∑

j=0
j 6=n

σ1(|j−n|d) Ej
z(xj) = eikxn, n = 0, 1, · · · , N . (11.30)

From Section 5 rapidly convergent expressions are available for σ1 and σ2. From (5.64) we
have

σ1(|n|d) = 2πi kh ei|n|kd

− 2π
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−|n|(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(11.31)

and from (5.68)

σ2 = 2
∞∑

l=1

[
iπ(kh)2H

(1)
0 (lkh) − 4

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)]

+ 4 kh Cl2(kh) + 4 Cl3(kh) + iπ(kh)2 − i
2

3
(kh)3, 0 < kh < 2π (11.32)

with the Clausen functions Cl2 and Cl3 defined and approximated by equations (D.8). Using
(B.11) and (B.12)

σ2 = 2πi(kh)2

{(
−1

2
+

1

kh

)
+ i

(
− 1

π

(
γ + ln

kh

4π

)
− 2

∞∑

l=1

[
1√

(2πl)2 − (kh)2
− 1

2πl

])}

− 8
∞∑

l=1

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)

+ 4 kh Cl2(kh) + 4 Cl3(kh) + iπ(kh)2 − i
2

3
(kh)3, 0 < kh < 2π . (11.33)
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It is then straightforward to write a computer program to solve the system of equations
(11.30) for the values of En

z (zn). To calculate the field at any point on the array axis (other
than at elements of the array) we then use (11.23) which can be written as

Ez(x) = eikx +
1

(kh)3

N∑

n=0

S En
z (xn) σ1(|nd− x|), x 6= nd (11.34)

with σ1(|nd − x|) given by (11.27) with j and n replaced by n and x/d, respectively. The
rapidly convergent expression (11.31) is used for calculating σ1(|nd− x|) with n replaced by
n− x/d.

Given values of Ez(x) we can calculate the reflection coefficient of the wave scattered
back in the negative x direction for x < 0 as well as the transmission coefficient of the
wave traveling in the positive x direction for x > Nd. Since the amplitude of the plane
wave incident on the partially finite array is 1, the reflection coefficient, R, is the complex

coefficient of the wave e−ikx for x < 0 with R obtained from the equation

R = Ez(x) eikx, x < 0 . (11.35)

In practice x should not be chosen too close to the origin in order for the transient scattered
waves to die out, say x/d < −10. The square of the magnitude of the transmission coefficient,
|T |2, is, of course, equal to 1− |R|2, since the array is assumed to be lossless. If the complex
transmission coefficient is desired, it can be obtained from the equation

T = [Ez(x) + eikx] e−ikx, x > Nd. (11.36)

In practice, x should not be chosen too close to the end of the array at x = Nd, say
x/d > N + 10.

11.3 PARTIALLY FINITE 3D ARRAY OF MAGNETODIELEC-
TRIC SPHERES

We investigate the field excited by a plane wave incident from free space on a 3D periodic
array of lossless magnetodielectric spheres. The array is finite in the direction of the array
axis and infinite in the directions transverse to the array axis. The direction of incidence
of the illuminating plane wave is parallel to the array axis, normal to the interface between
the array and free space. As in Section 9 it is assumed that the spheres can be modeled
by pairs of crossed electric and magnetic dipoles, each of the dipoles perpendicular to the
array axis. The z axis of a Cartesian coordinate system is taken to be the array axis and
N+1 equispaced planes parallel to the xy plane of magnetodielectric spheres are located
at x = nd, n = 0, 1, 2, · · · , N . In each plane the spheres are centered at (x, y) =
(mh, lh), l,m = 0, ±1, ±2, · · · with the electric and magnetic dipoles oriented in the x
and y direction, respectively. Our procedure is parallel to that used in our treatment of finite
3D acoustic monopole and electric dipole arrays. The electric and magnetic field vectors of
the incident plane wave illuminating the array from the left are

Ex,inc(z) = eikz (11.37a)
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Hy,inc(z)/Y0 = eikz (11.37b)

so that all spheres in any plane of the array are excited identically. As shown in Section 9,
the electric field at a point on the array axis has an x-component only, and the magnetic
field has a y-component only. Hence, at a point on the array axis not coinciding with an
array element, the electric field is given by [see (9.21)]

Ex(z) = eikz +
1
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{
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}
(11.38a)

and

Hy(z)

Y0

= eikz +
1

(kh)3

{
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−
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}
(11.38b)

where
ρmlnz =

√
m2 + l2 + [(nd− z)/h]2 . (11.39)

That is, the total field is equal to the incident field plus the sum of the waves scattered from
all the elements of the array. The coefficients b−n and b+n of the scattered waves are given
by

b−n = S−E
n
x (zn) (11.40a)

and
b+n = S+H

n
y (zn)/Y0 (11.40b)

where S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole
scattering coefficients, respectively,En

x (zn) and Hn
y (zn) are the external electric and magnetic

fields, respectively, incident on a sphere in the nth plane, and zn = nd, n = 0, 1, 2, · · · , N ,
so that from (11.38) and (11.40) the total electric field at a point on the array axis not
coinciding with an array element is

Ex(z) = eikz +
1

(kh)3

{
N∑

n=0

S−E
n
x (zn)
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∞∑

l=−∞
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[
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)
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mlnz
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+

(
(kh)2 +

ikh

ρmlnz
− 1

ρ2
mlnz

)
l2 + [(nd− z)/h]2

ρ2
mlnz

]

−
N∑

n=0

S+H
n
y (zn)/Y0

∞∑

m=−∞

∞∑

l=−∞

eikhρmlnz

ρmlnz

(
(kh)2 +

ikh

ρmlnz

)
(nd− z)/h

ρmlnz

}
(11.41a)

and the total magnetic field at a point on the array axis not coinciding with an array element
is

Hy(z)

Y0
= eikz +

1

(kh)3

{
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. (11.41b)

Since all the spheres in any plane of the array normal to the array axis are excited identically,
En
x (zn) and Hn

y (zn)/Y0 are equal, respectively, to the external electric and magnetic fields
incident on the sphere on the z axis at z = zn = nd. Expressions for En

x (zn) and Hn
y (zn)/Y0

are therefore obtained by summing the contribution of the incident plane wave eikzn and
the contribution of the fields scattered from all the array elements other than the (0, 0, zn)
sphere
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(11.42a)

and

Hn
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(11.42b)

where
ρmljn = ρml|j−n| =

√
m2 + l2 + [(j − n)d/h]2 (11.43)

and
ρml =

√
m2 + l2 . (11.44)

The triple sums in (11.42) are the sums of the scattered waves from the electric and magnetic
dipoles in all the planes of the array except the nth plane, and the double sums are the sums
of the scattered waves from the dipoles of the nth plane except for the element at (0, 0, nd).
(The reason for the notation En

x (zn) and Hn
y (zn) is that (11.42) can be extended to be

functions of z, En
x (z) and Hn

y (zn), at any point z on the array axis not coincident with an
array element simply by replacing nd in (11.43) by z.)
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Then (11.42a) and (11.42b) can be written respectively as

En
x (zn) = eikzn +

1

(kh)3

{
N∑

j=0
j 6=n
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j
x(zj) σ11(|j − n|d)
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−
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(11.47a)

and
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(11.47b)

and thus we have a system of 2(N+1) equations for the 2(N+1) unknowns En
x (zn),H

n
y (zn)/Y0,

n = 0, 1, 2, · · · , N

[
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3
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x(zj) = eikzn . (11.48b)

Comparing σ11 defined by (11.45a) with σ1 defined by (11.27), we see that σ11 = σ1 and so
(11.31) can be used for calculating σ11. Also σ2 given by (11.46) is identical to σ2 given by
(11.28) (as can be seen by interchanging l and m) so that (11.33) can be used for calculating
σ2 here as well. Finally, from (9.74), we have a rapidly convergent expression for σ12,

σ12(nd) = sgn(n)

[
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]
. (11.49)

It is then straightforward to write a computer program to solve the system of equations
(11.48) for the values of En

z (zn) and Hn
y (zn)/Y0. To calculate the field at any point on the

array axis (other than at elements of the array) we then use (11.41) which can be written as

Ex(z) = eikz+
1

(kh)3
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(11.50a)
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and
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= eikz+

1
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{
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x (zn) σ12(nd − z)

}
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(11.50b)
with σ11(|nd − z|) and σ12(nd − z) given by (11.45) with j and n replaced by n and z/d,
respectively. The rapidly convergent expressions (11.31) and (11.49) are used for calculating
σ11(|nd− z|) and σ12(nd − z) with n replaced by n− x/d.

Given values of Ex(z) we can calculate the reflection coefficient of the wave scattered
back in the negative z direction for z < 0 as well as the transmission coefficient of the
wave traveling in the positive z direction for z > Nd. Since the amplitude of the plane
wave incident on the partially finite array is 1, the reflection coefficient, R, is the complex

coefficient of the wave e−ikz for z < 0 with R obtained from the equation

R = Ex(z) eikz, z < 0 . (11.51)

In practice z should not be chosen too close to the origin in order for the transient scattered
waves to die out, say z/d < −10. The square of the magnitude of the transmission coefficient,
|T |2, is, of course, equal to 1− |R|2, since the array is assumed to be lossless. If the complex
transmission coefficient is desired, it can be obtained from the equation

T = [Ex(z) + eikz] e−ikz, z > Nd. (11.52)

In practice, z should not be chosen too close to the end of the array at z = Nd, say
z/d > N + 10.

12 NUMERICAL RESULTS

In this section we present the results obtained by numerically solving the transcendental
equations derived in Sections 2–10 for the real propagation constants β of traveling waves on
2D and 3D infinite periodic arrays of lossless scatterers whose only significant scattered fields
are those of spherical monopoles, in the case of acoustic scattering, and electric and/or mag-
netic dipoles, in the case of electromagnetic scattering. For the sake of comparison, we also
find the propagation constants on the corresponding 1D periodic arrays of some scatterers
from their transcendental equations given in previous reports [4], [5]. All these transcenden-
tal equations involve only well-known functions or rapidly convergent summations. They are
readily solved on a personal computer to efficiently obtain kd–βd curves (diagrams) for the
traveling waves.

As explained in the Introduction, traveling waves for βd > π can be re-expressed as
traveling waves with −π < βd < 0. Moreover, for periodic arrays of elements composed of
reciprocal material only, it is proven in Appendix A that every traveling wave is bidirectional,
that is, for every traveling wave with propagation constant β there exists a corresponding
traveling wave with propagation constant −β. Thus, the kd–βd diagrams in this section
require βd to cover only the domain [0, π] because all the arrays considered in this section
are composed of reciprocal elements.
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Also, as explained in the Introduction, unattenuated traveling waves (real β) on 1D and
2D infinite periodic arrays cannot exist for kd > βd. In other words, all fast waves on 1D
and 2D lossless periodic arrays are improper leaky waves. Therefore, all the kd axes on the
kd–βd diagrams for the 1D and 2D arrays in this section span the range only from 0 to π.
Since unattenuated traveling waves on lossless 3D arrays can exist for kd > βd, the kd–βd
diagrams for the 3D periodic arrays considered in this section may have their kd axes extend
to values larger than π. In all kd–βd diagrams, however, the range of kd is restricted to
the values of kd at which the quadrupole moments appear (the first spherical multipoles
of higher order than the electric and magnetic dipoles), since our analysis assumes that all
scattered fields are negligible except the electric and magnetic dipole fields.

The analysis also assumes that the spheres that circumscribe the elements of the periodic
arrays do not intersect. For generally shaped scatterers, the analysis also assumes that the
scattered electric and magnetic dipoles of any one element are determined only by the values
of the incident field (of all the other elements) at the center of that element and, thus, there
may be some inaccuracy introduced if the elements are too closely packed, even if their
circumscribing spheres do not intersect. Emphatically, however, for spherical scatterers we
have proven (as part of the foregoing analysis and the analysis in the previous reports [4], [5]),
using the orthogonality of the spherical harmonics and the field values at the center of the
incident spherical waves, that this assumption of the scattered dipole fields being determined
solely by the central incident field values holds exactly. Consequently, for spherical scatterers
there is no loss of accuracy introduced into our equations by packing the scatterers as tightly
as possible as long as the predominant scattering is that of electric and magnetic dipoles.

Once the kd–βd diagram is found for a 3D infinite periodic array, we use the formulas
derived in Section 9.2 (referred to herein as the Shore-Yaghjian formulas) for determining
the effective (bulk) permittivity and permeability of the array from the parameters in the
transcendental equation. In addition, these bulk parameters are also determined from the
Clausius-Mossotti relations, which, in general, are not as accurate as those determined from
the Shore-Yaghjian formulas. As a rule of thumb, the bulk parameters are not accurate
predictors of propagation characteristics and reflection or transmission coefficients unless
both kd and βd are less than about unity. Thus, we show the values of the bulk permittivity
and permeability in the following figures for kd no greater than about unity.

All the elements of the 2D and 3D arrays considered in this report are arranged in
rectangular and rectangular parallelepiped lattices, respectively. Furthermore, all the 2D
and 3D arrays considered in this section on the numerical results have the elements arranged
in square and cubic lattices, respectively, that is, h = d. For acoustic monopoles, or if only
electric (magnetic) dipoles are present in a traveling wave, the transcendental equation for
βd depends only on kd and the phase ψ of the scattering coefficient. Although the phase ψ
of the scattering coefficient of any given scatterer will generally change with frequency (that
is, with kd for a fixed separation distance d), it is revealing in the following subsection to
plot the family of kd–βd curves determined by different values of the phase ψ for 2D and
3D arrays of acoustic monopoles and electric (magnetic) dipoles. Corresponding plots for
1D periodic arrays of acoustic monopoles, electric (magnetic) dipoles, and magnetodielectric
spheres, were given, respectively, in [3]–[5]. The 1D, 2D, and 3D families of kd–βd curves
for magnetic dipoles are identical to those for electric dipoles.

In Subsections 12.2–12.5 kd–βd diagrams and effective permittivity and permeability
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curves (for 3D arrays) are given for representative scatterers, namely, for short perfectly elec-
trically conducting (PEC) wires, for PEC spheres, for diamond spheres, for silver nanospheres,
and for magnetodielectric spheres. In Subsection 12.6 we show plots of the reflection coeffi-
cient for partially finite arrays of magnetodielectric spheres.

12.1 FAMILY OF kd–βd CURVES FOR ACOUSTIC MONOPOLES

AND ELECTRIC OR MAGNETIC DIPOLES

The transcendental equation in (2.26) for a 2D square lattice (h = d) of lossless acoustic
monopole scatterers determines βd, the propagation constant times the separation distance,
of the traveling waves in terms of kd and the phase ψ of the scattering coefficient S, which
was proven to satisfy |S| = sinψ so that ψ is confined to the range [0, 180] degrees. The
family of kd–βd curves for different values of ψ is shown in Fig. 1. Similarly, the family of
kd–βd curves for a 3D cubic lattice of lossless acoustic monopole scatterers is found from
the transcendental equation (3.53) and is given in Fig. 2. The curves in Fig. 1 for the 2D
array and those in Fig. 2 for the slow waves of the 3D array agree qualitatively with the
corresponding curves for the 1D array in Fig. 3 of [3]. In particular, these curves show that
if the scattering from each acoustic monopole is nearly in phase with its incident field (ψ
small), a traveling wave exists for nearly all values of kd, but if the scattering from each
acoustic monopole is nearly 180 degrees out of phase with its incident field, a traveling wave
only exists for very close spacing (kd� 1).

Numerically solving the transcendental equations in (4.62) and (4.101) for the propaga-
tion constants of traveling waves on a 2D square-lattice array of electric (or magnetic) dipole
scatterers with dipole moments normal to the propagation direction produces the family of
kd–βd curves shown in Fig. 3 if the dipoles are in the plane of the 2D array and in Fig. 4
if the dipoles are perpendicular to the plane of the 2D array. Figure 5 shows the family of
kd–βd curves obtained from the transcendental equation (5.75) for traveling waves on a 3D
cubic-lattice array of electric (or magnetic) dipole scatterers with dipole moments normal to
the direction of propagation. In Figs. 6 and 7 the family of kd–βd curves is given from the
transcendental equations (6.79) and (7.76) for electric (or magnetic) dipole scatterers parallel
to the direction of propagation on square-lattice 2D and cubic-lattice 3D arrays, respectively.
For all these lossless electric (or magnetic) dipole scattering curves, the scattering coefficient
was proven to satisfy the relationship |S| = (3/2) sin ψ.

The family of kd–βd curves in Fig. 4 for the dipoles perpendicular to the plane of the 2D
array is qualitatively the same as the corresponding family of curves in Fig. 3 of [4] for the
1D array of dipoles normal to the direction of propagation. The family of kd–βd curves in
Fig. 3 for dipoles in the plane of the 2D array (and normal to the direction of propagation)
and in the slow wave curves of Fig. 5 for dipoles normal to the direction of propagation on a
3D array is quite different from the 1D array curves in Fig. 3 of [4], because, evidently, the
coupling of the radial fields between adjacent scatterers is stronger in the 2D and 3D arrays
of Figs. 3 and 5. The family of kd–βd curves in Fig. 6 for the 2D array of dipoles parallel
to the direction of propagation is qualitatively the same as the corresponding 1D array of
parallel dipoles in Fig. 13 of [4], whereas the family of kd–βd curves in Fig. 7 for dipoles
parallel to the direction of propagation on a 3D array exists only in a very narrow frequency
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band for a fixed value of ψ.

12.2 PEC SHORT WIRES AND PEC SPHERES

In this subsection, the kd–βd diagrams and relative permittivity and permeability of perfectly
electrically conducting (PEC) short wires and PEC spheres are determined from the relevant
transcendental equations derived in the previous sections.

12.2.1 PEC Short Wires

The kd–βd diagram for an infinite linear (that is, 1D) periodic array of short parallel PEC
wires (electric dipoles), normal to the propagation axis, with different ratios of wire length to
separation distance (2h/d)10 is given in Fig. 4 of [4]. The ratio of the radius of each wire to its
length [ρ/(2h)] is equal to 0.1, and the phase ψ of the scattering coefficient S was computed
at each kh with the Numerical Electromagnetics Code (NEC) [41]. The corresponding kd–βd
diagrams for traveling waves on 2D and 3D short parallel PEC wires (electric dipoles) normal
to the propagation axis are computed from the transcendental equations in (4.62), (4.101),
and (5.75) and are shown in Figs. 8, 9, and 10, all three of which display the same general
variation for the 2D and 3D arrays of parallel wires as for the 1D array in Fig. 4 of [4]. Until
the values of kd become significantly greater than 1, the values of β are fairly close to the
values of k and thus the traveling waves on these short wires will be loosely coupled to the
wires except for values of βd fairly close to π, where the 3D array does not well approximate
a homogeneous medium characterized by bulk permittivity. Incidentally, the curves in these
short-wire figures do not continue to very small values of kd simply because we didn’t have
the NEC-determined values of ψ readily available for these small values of kd. Also, the
range of the kd axis in the 3D-array Fig. 10 is restricted to π because significant multipoles
of higher order than electric dipoles are excited on the wires for kd > π.

The numerical solution to the transcendental equations in (6.79) and (7.76) showed that
there are no unattenuated traveling waves on 2D and 3D arrays (kd < π) of short PEC wires
oriented parallel to the propagation axis–as was also found in the case of 1D arrays of wires
parallel to the array axis [4]. It is noted, however, that the constant ψ curves in Figs. 6 and
7 imply that if the short wires were passively loaded to change the values of their scattering
coefficients, that is, change the values of ψ, traveling waves could be supported by these
longitudinally oriented wires [42].

The effective relative permittivity versus kd of the 3D array of transverse dipoles corre-
sponding to the kd–βd curves of Fig. 10 are computed from the Shore-Yaghjian formula in
(9.109) and from the real part11 of the Clausius-Mossotti relation (9.120) and are shown in
Fig. 11. In the region kd . 1, the values of βd are . 1 and thus, as would be expected, the
real part of the Clausius-Mossotti relation predicts a relative permittivity that agrees quite

10Here the symbol h denotes the half-length of the wires and should not be confused with the 2D- and
3D-array transverse separation distance denoted by the same symbol h, which is set equal to the longitudinal
separation distance d along the propagation axis in all the numerical examples of this section.

11As explained in Section 9.2, the Clausius-Mossotti relations, unlike the Shore-Yaghjian formulas, erro-
neously predict imaginary parts for the effective permittivity and permeability of these unattenuated traveling
waves on lossless arrays. The imaginary parts are usually much smaller than the real parts, however, if kd
and βd are . 1.

148



well with the Shore-Yaghjian results obtained from the exact transcendental equation. Of
course, since there are no appreciable magnetic dipole moments on short wires, the relative
permeability of the 3D arrays is equal to unity.

12.2.2 PEC Spheres

The fields scattered by a PEC sphere illuminated by a incident plane wave contains a signifi-
cant magnetic dipole moment as well as an electric dipole moment even as the frequency (kd)
approaches zero. Thus, the transcendental equations for magnetodielectric spheres must be
used to find the kd–βd diagrams for the traveling waves on 1D, 2D, and 3D arrays of PEC
spheres. Specifically, the kd–βd diagrams for the transverse traveling waves (that is, trav-
eling waves with orthogonal electric and magnetic dipole moments normal to the direction
of propagation) on 1D, square-lattice 2D, and cubic-lattice 3D arrays of PEC spheres are
determined from equation (52) of [5] or (18) of [7] (for 1D arrays), from (8.52) and (8.104)
(for 2D arrays), and from (9.84) (for 3D arrays), and are shown in Figs. 12–15 for values of
a/d = .3, .4, and .45, where a is the radius of the spheres. The electric and magnetic dipole
scattering coefficients, S− and S+, required by the transcendental equations are obtained
from the electric and magnetic dipole coefficients in the Mie solution; see Section 8 and [5,
eqs. (30a,b)]. The resonance of the first quadrupole moment of the PEC sphere occurs at
a value of ka = 2.3 and thus the 3D curves in Fig. 15 are truncated at the corresponding
values of kd.

All the Figs. 12–15 for PEC spheres exhibit kd–βd curves similar to those in [4, fig. 4]
and Figs. 8–10 for the short PEC wires. In particular, traveling waves on the PEC spheres
do not travel with speeds much less than the free-space speed of light (and thus are not
strongly coupled to the spheres) until the values of βd are fairly close to π, where the 3D
array does not well approximate a homogeneous media characterized by a bulk permittivity
and permeability. We also note that the 3D-array curves in Fig. 15 have regions of negative
group velocity for values of kd > π. However, because kd > π in this region, the negative
group velocity does not imply that the direction of power flow in the traveling wave is
opposite the direction of the phase velocity; see Section 9.2 and [15, sec. 5.3].

The effective relative permittivity and permeability versus kd of the 3D array of orthogo-
nal transverse electric and magnetic dipoles corresponding to the kd–βd curves of Fig. 15 are
computed from the Shore-Yaghjian formulas in (9.107)–(9.108) and from the real parts (see
Footnote 11) of the Clausius-Mossotti relations in (9.120) and (9.127), and are shown in Fig.
16. In the region kd . 1, the values of βd are . 1 and thus, as would be expected, the real
parts of the Clausius-Mossotti relations predict a relative permittivity and permeability that
agree quite well with the Shore-Yaghjian formulas obtained from the exact transcendental
equation. The values of the effective relative permittivity and permeability in Fig. 16 are
commensurate with the facts that for ka � 1 the electric and magnetic dipole moments in
the Mie solution to the PEC sphere are in the ratio of two to one and have opposite signs.

The numerical solution to the transcendental equations in [4, eq. (96)], (6.79), and (7.76)
for longitudinal traveling waves (that is, traveling waves with either electric or magnetic
dipoles along the direction of propagation) show that none exist on 1D and 2D arrays of
PEC spheres and that only an electric dipole longitudinal wave exists on a 3D array of PEC
spheres, as shown in Fig. 17, and then only for the case of a/d = .3 and values of kd greater
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than 5.5.

12.3 DIAMOND SPHERES

Diamond has a nearly constant relative permittivity of 5.84 with very low loss at optical
frequencies and a relative permeability equal to unity. We shall assume this value of relative
permittivity for diamond in all the numerical computations for arrays of diamond spheres
of radius a. We shall also assume a single packing ratio of a/d = .45. The first resonance
of the diamond sphere is a magnetic dipole resonance that occurs at a ka = 1.25 even
though the electric dipole moment dominates at lower values of ka. (In general, the first
resonance of a positive-permittivity sphere is a magnetic dipole and the first resonance of a
negative-permeability sphere is an electric dipole.) Therefore, to obtain the kd–βd curves
for the transverse waves on 1D, 2D, and 3D arrays of diamond spheres, one must use the
magnetodielectric transcendental equations [5, eq. (52)] or [7, eq. (18)] (for 1D arrays), (8.52)
and (8.104) (for 2D arrays), and (9.84) (for 3D arrays). The electric and magnetic dipole
scattering coefficients, S− and S+, required by the transcendental equations are obtained
from the electric and magnetic dipole coefficients in the Mie solution; see Section 8 and [5,
eqs. (30a,b)]. The numerical solutions to these transcendental equations are plotted in the
kd–βd diagrams of Figs. 18–24. The curves in these figures for the slow traveling waves are
similar to those for the traveling waves on PEC wires and PEC spheres except for the second
branches of the curves produced by the magnetic dipole resonance of the diamond sphere. On
these second branches the group velocity is negative (opposite the phase velocity). However,
the 3D array of these diamonds would not be meaningfully characterized by negative effective
permittivity and permeability in this region of negative group velocity because kd � 1 in
this region. In the region kd < 1 the effective relative permeability of the 3D array is
approximately equal to unity and the effective relative permittivity computed from both the
Shore-Yaghjian formula (9.107) and the real part (see Footnote 11) of the Clausius-Mossotti
relation (9.120) is shown in Fig. 24, which shows that the bulk relative permittivity of
the 3D array of closely packed diamond spheres in this small kd region is about 2, a value
between that of diamond (5.84) and that of free space (1). This is reflected in the fact that,
in contrast to the 1D and 2D kd–βd diagrams of Figs. 18 and 20, the 3D kd–βd curve of
Fig. 21 has a constant slope of less than one in the low frequency (large wavelength) limit
since the slope of the kd–βd line approaching the origin is equal to [see (9.94)]

kd

βd
=

√
1

εeffr
(12.1)

which in this case is approximately equal to 1/
√

2 ≈ 0.7 .
The range of the values of kd in Fig. 21 for transverse traveling waves on the 3D array of

diamond spheres is limited to 4 because the first quadrupole resonance occurs at about this
value. In Fig. 22 the range of kd in Fig. 21 is extended to a value of 6. Fig. 23 shows the
kd–βd curves for the same 3D array of diamond spheres computed from a finite difference
time domain (FDTD) code [43]. A comparison of Figs. 22 and 23 shows good agreement
between the kd–βd curves computed from our transcendental equations and from the FDTD
code up to a value of kd ≈ 4 where the resonance of the first quadrupole moment occurs.
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The kd–βd curves for longitudinal traveling waves of electric or magnetic dipoles parallel
to the direction of propagation are computed for the diamond spheres from the transcendental
equations in [4, eq. (96)], (6.79), and (7.76) for 1D, 2D, and 3D arrays, respectively, and
are plotted in Figs. 25, 26, and 27. Figures 25 and 26 show that on the 1D and 2D arrays
of diamond spheres there are only magnetic dipole longitudinal waves and then only in a
narrow bandwidth near the first resonant frequency of the spheres. Figure 27 shows that
both electric (for kd > π) and magnetic dipole longitudinal traveling waves exist on 3D
arrays of diamond spheres, again in fairly narrow bandwidths.

12.4 SILVER NANOSPHERES

The kd–βd diagrams for the unattenuated traveling waves on PEC wires, PEC spheres, and
diamond spheres have shown that βd 6� kd and thus the fields of these traveling waves
are not strongly coupled or tightly confined to the elements of the arrays. That is, the
preponderance of the power in the fields is not concentrated within a distance appreciably
less than a wavelength from the scattering elements of the arrays. For use in optical circuitry,
it is desirable to produce traveling waves at optical frequencies that are confined to a small
fraction of a wavelength from array elements that are also small fractions of a wavelength
across. One possibility12 for producing such traveling waves is to use linear (1D) chains of
silver nanospheres [48]–[51], since at optical frequencies silver behaves as a plasma with a
negative dielectric constant (relative permittivity). Such plasmas support surface waves at
the silver interface which lead to electric dipole resonances of the silver spheres with fields
confined to a small fraction of a wavelength from the spheres. Therefore, in this subsection
we shall use our transcendental equations to compute the kd–βd diagrams for traveling
waves on 1D, 2D, and 3D arrays of silver nanospheres [6]. Unlike spheres with a positive
dielectric constant (like diamond spheres) whose first resonance is that of a magnetic dipole,
the first resonance of “plasmonic” spheres with negative dielectric constant is that of an
electric dipole. Consequently, for silver nanospheres the transcendental equations for purely
electric dipoles would produce accurate kd–βd curves through the first dipole resonance.
Nonetheless, we used the magnetodielectric transcendental equations in [5, eq. (52)] or [7,
eq. (18)] for 1D arrays, (8.52) and (8.104) for 2D arrays, and (9.84) for 3D arrays of silver
nanospheres.

The kd–βd diagrams for transverse traveling waves on 1D, 2D, and 3D silver nanospheres
are shown in Figs. 28–31. The curves were computed using the following Drude model for
relative permittivity, which agrees quite well with the values of relative permittivitymeasured
by Johnson and Christy [44] over the visible range of frequencies where lowest order traveling
waves exist:

εr =
ε

ε0
= 5.45 − .73

ω2
p

ω(ω + iγ)
(12.2)

with the plasma frequency ωp = 1.72 × 1016 and the loss parameter γ = 8.35 × 1013. To
conform to the parameters used in [45], the radius a of the spheres was chosen to be 5

12Another possibility for producing tightly confined traveling waves would be to use spheres with high
values (& 100) of permittivity or permeability. However, low-loss materials apparently do not exist that
have such high values of permittivity or permeability at optical frequencies.
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nanometers and the spheres were embedded in glass with a dielectric constant equal to 2.56
(k = 1.6× ω/c). With these parameters the relative permittivity of the spheres in glass can
be written from the Drude equation in (12.2) as

εr =
ε

εglass

= 2.129 − .0234

(ka/1.6)[(ka/1.6) + .00139i]
. (12.3)

Since our formulation assumes lossless array elements, and the permittivity in (12.2)–(12.3)
contains loss (an imaginary part), we inserted just the real part of (12.3) into the transcen-
dental equations used to obtain Figs. 28–31. This approximation should give reasonably
accurate values for the real parts of the propagation constants (βd) of the traveling waves
because the imaginary part of the permittivity in (12.3) is a small fraction of the real part
in the visible range of frequencies where the lowest order traveling waves exist. The electric
and magnetic dipole scattering coefficients, S− and S+, required by the transcendental equa-
tions are obtained from the electric and magnetic dipole coefficients in the Mie solution; see
Section 8 and [5, eqs. (30a,b)]. The parameter s in Figs. 28–31 is the free-space distance
between the spheres so that d = s+ 2a, and traveling waves are found in Figs. 28–31 for s
equal to 1 nanometer and 4 nanometers, again to conform to the values chosen in [45].

The electric-dipole longitudinal traveling waves on 1D, 2D, and 3D arrays of the same
silver nanospheres embedded in glass are computed from [4, eq. (96)], (6.79), and (7.76),
respectively, and are shown in Figs. 32, 33, and 34.

The figures for the transverse traveling waves on silver nanospheres in Figs. 28–31 and for
the longitudinal traveling waves in Figs. 32–34 show that much of the kd–βd curves of all the
traveling waves exist in fairly narrow frequency bands and over much of each of these narrow
frequency bands βd � kd. This implies that these plasmonic traveling waves, as expected,
can have most of their power confined to within a small fraction of a free-space wavelength
from the spheres. The 1D and 2D kd–βd curves in Figs. 28–30 for the transverse traveling
waves on the silver nanospheres asymptotically approach the origin along the kd = βd
line, that is, the “light line.” In contrast, the 3D kd–βd curves in Fig. 31 asymptotically
approach the origin along lines of constant slope less than one. This is because, similarly
to the behavior of the kd–βd curve of the 3D diamond sphere array discussed in Subsection
12.3, in the low frequency (large wavelength) limit the 3D silver nanosphere array behaves
as a medium with an effective relative permeability approximately equal to unity and an
effective relative permittivity greater than one (see below) with the slope of the kd–βd line
approaching the origin given by (12.1).

The kd–βd curves in Figs. 32 and 33 for the slow longitudinal traveling waves on 1D and
2D arrays of silver nanospheres, in contrast to the kd–βd curves for the transverse traveling
waves, end abruptly on the kd = βd light line.

Concentrating on the kd–βd curves in Figs. 28–31 for the transverse traveling waves
on the 1D, 2D, and 3D arrays of silver nanospheres shows that for each curve the group
velocity becomes zero and then the curve remains fairly flat to the right of this maximum.
This implies that for a traveling wave containing a spectrum of frequencies covering this
maximum and the continuation of the kd–βd curve to the right of the maximum, there
exists a superposition of a “frozen-mode” field and a spectrum of traveling waves moving
with very slow group velocities [46]. It should be noted that the slightly negative group
velocities in Fig. 31 for the 3D array occur for βd significantly greater than unity and
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thus these negative group velocities do not imply meaningful bulk relative permittivities
and permeabilities with values both less than zero. Of course, since the magnetic dipole
moments of the silver nanospheres are negligible, the bulk relative permeability cannot have
a meaningful value other than unity.

The effective relative permeability of the 3D array of glass-embedded silver nanospheres is
approximately equal to unity and the effective relative permittivity computed from both the
Shore-Yaghjian formula (9.107) and the real part (see Footnote 11) of the Clausius-Mossotti
relation (9.120) is shown in Fig. 35. This figure reveals for the more loosely packed 3D
array of silver nanospheres (s = 4 nm) in the region [kd < .3, βd < 1] that the bulk relative
permittivity is less than 10 and approaches a constant value of about 1.8 as kd → 0. For
the more tightly packed nanospheres (s = 1 nm) in the region [kd < .2, βd < 1], the bulk
relative permittivity is less than 12 and approaches a constant value of about 3.0 as kd→ 0.

12.5 MAGNETODIELECTRIC SPHERES

Using expressions derived by Lewin [2] that are closely related to the Clausius-Mossotti
relations for spherical scatterers, Holloway et al. [1] have shown that 3D arrays of magne-
todielectric spheres with equal (and unequal) values of relative permittivity and permeability
exhibit frequency bands (near the resonances of these spheres) in which the bulk permittivity
and permeability are both negative. We concentrate on the case of equal relative permit-
tivity and permeability because the impedance of a 3D array of such spheres will be close
to the impedance of free space. To confirm these predictions of “double negative” (DNG)
“metamaterials,” we apply the magnetodielectric transcendental equations in [5, eq. (52)] or
[7, eq. (18)] (for 1D arrays), (8.52) and (8.104) (for 2D arrays), and (9.84) (for 3D arrays)
to obtain the kd–βd diagrams shown in Figs. [5, fig. 15] or [7, fig. (8)], 36, and 37 for
the transverse traveling waves on spheres with relative permittivity and permeability equal
to 20. In all these figures, the value of a/d = .45 is used for the sphere radius to spacing
ratio and the range of kd is restricted to values less than the first quadrupole resonance that
occurs at ka = .28. There is only one figure for the 2D array because the transverse traveling
waves with the electric dipole moments perpendicular and parallel to the plane of the 2D
array have the same kd–βd diagram if the permittivity and permeability of the spheres have
the same value.

The shape of the kd-βd curves in Figs. [5, fig. 15] or [7, fig. (8)] and 36 for the transverse
traveling waves on the 1D and 2D arrays of µr = εr = 20 magnetodielectric spheres are
qualitatively the same but with the first branch of the 1D curve having two values of kd with
zero group velocity and the second branch of the 2D curve having one value of kd with zero
group velocity. The kd–βd curve for the 3D array, which is of greatest interest as a possible
DNG material, crosses the light line and has no values of kd with zero group velocity.

The effective (bulk) relative permittivity and permeability of this 3D metamaterial is
computed from the Shore-Yaghjian formulas in (9.107)–(9.108) and from the real parts (see
Footnote 11) of the Clausius-Mossotti relations in (9.120) and (9.127), and are shown in
Fig. 38. The Clausius-Mossotti curve in Fig. 38 is indistinguishable from the corresponding
curve computed from the Lewin formulas in [1, fig. 7]. Both the results of the Shore-Yaghjian
formulas and the Clausius-Mossotti relations plotted in Fig. 38 confirm the results obtained
in [1] that there exists a frequency band (near the first resonance of the magnetodielectric
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spheres) in which both µeff
r and εeffr are negative, namely in the approximately 10% fractional

bandwidth between kd equal to about .45 and .50. Moreover, βd is also less than 1 over a
sizable portion of this DNG frequency band so that the material should behave as a fairly
homogeneous medium at these frequencies. The bulk properties of this 3D magnetodielectric
array medium are reflected in the slope of the kd–βd curve of Fig. 37) as the origin is
approached. The slope of the curve in the low frequency (large wavelength) limit is given by
[see (9.94)]

kd

βd
=

1

εeffr
=

1

µeff
r

. (12.4)

Low-loss magnetodielectric material is commercially available at GHz frequencies with
εr = 13.8 and µr = 11.0 [47]. Our computations with spheres made from this magnetodi-
electric material result in the kd–βd diagram of Fig. 39 and the effective permittivity and
permeability curves shown in Fig. 40. Again there is a frequency band (between kd approx-
imately equal to .7 and .8) where both µeff

r and εeffr are negative. And, βd is also less than 1
over a sizable portion of this DNG frequency band so that the material should behave as a
fairly homogeneous medium at these frequencies.

We also looked for longitudinal traveling waves (electric or magnetic dipoles aligned with
the direction of propagation) on the µr = εr = 20 magnetodielectric sphere separated with
a/d = .45. None exist on the 2D array in the range of kd up to the first quadrupole
resonance, but the 1D and 3D arrays do support electric- or magnetic-dipole longitudinal
traveling waves in the extremely narrow frequency bands shown in Figs. 41 and 42. As seen
in Fig. 41, the 1D kd–βd longitudinal curve terminates on the kd = βd light line, whereas
the 3D longitudinal curve in Fig. 42 continues unperturbed through the light line.

12.6 PARTIALLY FINITE MAGNETODIELECTRIC SPHERE
ARRAY REFLECTION COEFFICIENTS

In this subsection we show examples of reflection coefficient curves for partially finite arrays
of magnetodielectric spheres. Plots for two kinds of spheres are shown: diamond spheres
with εr = 5.84, µr = 1, and spheres composed of low-loss commercially available material
with εr = 13.0, µr = 11.8. The values of the reflection coefficients, R, for the partially finite
arrays are obtained from (11.51) and (11.50a). In all cases the value of N is 100 (that is,
there are 101 equispaced infinite planes of spheres normal to the array axis), and the ratio
of the radius of the spheres, a, to the separation of adjacent sphere centers, d, is 0.45. For
both kinds of spheres we show plots for two cases, one where there is no loss, and one with
loss inserted into the propagation constant of the incident plane wave when calculating the
values of En

x (zn) and Hn
y (zn)/Y0, n = 0, 1, · · · , N from (11.48) that enter into (11.50a). The

value of the loss constant, ε, is chosen via the equation

e−Nkdε = 10−P (12.5)

with P = 1. Given the value of ε from (12.5) the values of the incident plane wave, eikzn,
at the locations z = zn = nd, n = 0, 1, · · · , N in the RHS of (11.48) are then multiplied by
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the respective factors e−εnkd, n = 0, 1, · · · , N .13 The purpose of inserting loss is to reduce
the reflections at the far end of the partially finite arrays and so make them behave more
like semi-infinite arrays with no reflections at the far end. It is then possible to compare
the reflection coefficients obtained from the partially finite array equation (11.51) with the
reflection coefficients obtained from the calculations of bulk permittivity and permeability
given by the Shore-Yaghjian formulas (9.120) and (9.127) using the expression [25, eq. (7.42)]

R =

√
µr/εr − 1√
µr/εr + 1

. (12.6)

In Fig. 43 we show a plot of the magnitude of the reflection coefficient for the partially
finite lossless diamond array. The pronounced oscillations of the pattern are the result of
reflections between the two ends of the array. Thus, the array behaves somewhat like a Fabry-
Perot resonator. Note that the intervals of the plot where the magnitude of the reflection
coefficient equals one correspond exactly to the gaps in the kd–βd diagram of Fig. 21, that
is, the intervals of kd where no traveling wave exists to convey power from one end of the
array to the other.

In Fig. 44 we show the plot of the magnitude of the reflection coefficient for the partially
finite diamond array with loss inserted into the incident plane wave, together with a plot of
the magnitude of the reflection coefficient obtained from the Shore-Yaghjian bulk parameter
equations. The oscillations of Fig. 43 have been considerably reduced. Note that for values
of kd less than one there is excellent agreement between the lossy partially finite array
reflection coefficient and the Shore-Yaghjian coefficient given by (12.6) apart from a small
interval of kd between zero and about 0.1. This is to be expected since the derivation of
the Shore-Yaghjian bulk parameter expressions assumes a separation of the array elements
sufficiently small so that the array can be regarded as a homogeneous medium. For larger
values of kd there is a kind of rough qualitative agreement but the Shore-Yaghjian reflection
coefficient values are in general not highly accurate. As kd becomes smaller than .1, the
total thickness of the slab with decaying incident field (simulating a loss) becomes smaller
than a free-space wavelength and its scattering becomes weaker.

In Fig. 45 we show a plot of the magnitude of the reflection coefficient for the partially
finite lossless array of εr = 13.0, µr = 11.8 spheres over an extended range of kd. As with
the lossless diamond sphere array reflection coefficient curve, the intervals of kd for which
the magnitude of the reflection coefficient equals one correspond to intervals of the extended
kd–βd diagram of Fig. 46 where no traveling wave exists. The portions of the curve between
adjacent spikes correspond to the backward traveling wave branches of the kd–βd diagram.

In Fig. 47 we show a corresponding plot of the magnitude of the reflection coefficient for
the partially finite array of εr = 13.0, µr = 11.8 spheres with loss inserted into the incident
plane wave, together with a plot of the magnitude of the reflection coefficient obtained from
the Shore-Yaghjian bulk parameters in (12.6). Here the agreement between the two reflection
coefficient curves is surprisingly good even for larger values of kd. There is, however, one

13This exponential decay inserted into the incident field on the right-hand sides of (11.48) does not satisfy
Maxwell’s equations in lossless free space. Nonetheless, this mathematical ansatz serves to reduce the multiple
interactions between the leading and trailing interfaces of the partially finite array, thereby producing a
reflection coefficient that is nearly equal to that of the leading interface alone.
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feature of the partially finite array curve that is not reproduced in the Shore-Yaghjian curve,
namely the smaller spike between each pair of principal spikes at the two ends of the backward
traveling wave intervals. These smaller spikes occur exactly where the kd–βd curve in Fig.
46 crosses the kd = βd light line and, since they occur in the backward traveling wave
intervals, correspond to places where the traveling wave has exactly the negative of the
incident wave phase dependence on z. Some numerical experimentation shows that these
smaller spikes are attributable to reflections from only the first few planes of the partially
finite array, and so cannot be found in the reflection coefficient curve obtained from the
Shore-Yaghjian bulk parameter expressions. It is also worth noting that for values of kd >
1, a reflection coefficient curve obtained from the Clausius-Mossotti mixing formula bulk
parameter expressions (not shown here) does not track the partially finite array curve nearly
as well as the curve obtained from the Shore-Yaghjian expressions. This is not surprising in
view of the fact that the Clausius-Mossotti bulk parameter expressions are much more tightly
bound to the assumption of small array element separations than are the Shore-Yaghjian bulk
parameter expressions.

In closing this subsection we note that the reflection coefficient for a partially finite array
of magnetodielectric spheres with εr = µr = 20 was found to be very close to zero for all
values of kd, a result that is consistent with εr = µr in (12.6).
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Figure 1: Family of kd–βd curves for 2D acoustic array of monopoles with constant values
of the phase ψ of the scattering coefficient S.

Figure 2: Family of kd–βd curves for 3D acoustic array of monopoles with constant values
of the phase ψ of the scattering coefficient S.
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Figure 3: Family of kd–βd curves for 2D array of dipoles (parallel to the array plane) with
constant values of the phase ψ of the scattering coefficient S.

Figure 4: Family of kd–βd curves for 3D array of dipoles (perpendicular to the array plane)
with constant values of the phase ψ of the scattering coefficient S.
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Figure 5: Family of kd–βd curves for 3D array of dipoles (normal to the propagation direc-
tion) with constant values of the phase ψ of the scattering coefficient S.

Figure 6: Family of kd–βd curves for 2D array of dipoles (parallel to the propagation direc-
tion) with constant values of the phase ψ of the scattering coefficient S.
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Figure 7: Family of kd–βd curves for 3D array of dipoles (parallel to the propagation direc-
tion) with constant values of the phase ψ of the scattering coefficient S.

Figure 8: kd–βd curves for 2D array of short-wire electric dipoles (parallel to the array plane)
with ψ obtained from NEC code.
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Figure 9: kd–βd curves for 2D array of short-wire electric dipoles (perpendicular to the array
plane) with ψ obtained from NEC code.

Figure 10: kd–βd curves for 3D array of short-wire electric dipoles (normal to the propagation
direction) with ψ obtained from NEC code.
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Figure 11: Effective relative permittivity for 3D array of short-wire electric dipoles (normal
to the propagation direction) with ψ obtained from NEC code.

Figure 12: kd–βd curves for 1D array of PEC spheres (dipole moments normal to the prop-
agation direction) with dipole scattering coefficients obtained from Mie solution.
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Figure 13: kd–βd curves for 2D array of PEC spheres (electric dipole moments parallel to
the array plane) with dipole scattering coefficients obtained from Mie solution.

Figure 14: kd–βd curves for 2D array of PEC spheres (electric dipole moments perpendicular
to the array plane) with dipole scattering coefficients obtained from Mie solution.
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Figure 15: kd–βd curves for 3D array of PEC spheres (dipole moments normal to the prop-
agation direction) with dipole scattering coefficients obtained from Mie solution.

Figure 16: Effective relative permittivity and permeability for 3D array of PEC spheres
(dipole moments normal to the propagation direction) with dipole scattering coefficients
obtained from Mie solution.
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Figure 17: kd–βd curve for 3D array of PEC spheres (electric dipole moments parallel to the
propagation direction) with electric dipole scattering coefficients obtained from Mie solution.

Figure 18: kd–βd diagram for 1D array of diamond spheres (dipole moments normal to the
propagation direction) with a/d = .45 and dipole scattering coefficients obtained from Mie
solution.
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Figure 19: kd–βd diagram for 2D array of diamond spheres (electric dipole moments parallel
to the array plane) with a/d = .45 and dipole scattering coefficients obtained from Mie
solution.

Figure 20: kd–βd diagram for 2D array of diamond spheres (electric dipole moments perpen-
dicular to the array plane) with a/d = .45 and dipole scattering coefficients obtained from
Mie solution.
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Figure 21: kd–βd diagram for 3D array of diamond spheres (dipole moments normal to the
propagation direction) with a/d = .45 and dipole scattering coefficients obtained from Mie
solution.

Figure 22: Extended kd–βd diagram for 3D array of diamond spheres (dipole moments nor-
mal to the propagation direction) with a/d = .45 and dipole scattering coefficients obtained
from Mie solution.
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Figure 23: Extended kd–βd diagram for 3D array of diamond spheres (dipole moments nor-
mal to the propagation direction) with a/d = .45 and dipole scattering coefficients obtained
from FDTD solution.

Figure 24: Effective relative permittivity for 3D array of diamond spheres (dipole moments
normal to the propagation direction) with a/d = .45 and dipole scattering coefficients ob-
tained from Mie solution.
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Figure 25: kd–βd diagram for 1D array of diamond spheres (magnetic dipole moments par-
allel to the propagation direction) with a/d = .45 and magnetic dipole scattering coefficients
obtained from Mie solution.

Figure 26: kd–βd diagram for 2D array of diamond spheres (magnetic dipole moments par-
allel to the propagation direction) with a/d = .45 and magnetic dipole scattering coefficients
obtained from Mie solution.
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Figure 27: kd–βd diagram for 3D array of diamond spheres (magnetic dipole moments par-
allel to the propagation direction) with a/d = .45 and magnetic dipole scattering coefficients
obtained from Mie solution.

Figure 28: kd–βd curves for 1D array of glass-embedded silver nanospheres (dipole mo-
ments normal to the propagation direction) with a = 5 nm and dipole scattering coefficients
obtained from Mie solution.
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Figure 29: kd–βd curves for 2D array of glass-embedded silver nanospheres (electric dipole
moments parallel to the array plane) with a = 5 nm and dipole scattering coefficients ob-
tained from Mie solution.

Figure 30: kd–βd curves for 2D array of glass-embedded silver nanospheres (electric dipole
moments perpendicular to the array plane) with a = 5 nm and dipole scattering coefficients
obtained from Mie solution.
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Figure 31: kd–βd curves for 3D array of glass-embedded silver nanospheres (dipole mo-
ments normal to the propagation direction) with a = 5 nm and dipole scattering coefficients
obtained from Mie solution.

Figure 32: kd–βd curves for 1D array of glass-embedded silver nanospheres (electric dipole
moments parallel to the direction of propagation) with a = 5 nm and electric dipole scattering
coefficients obtained from Mie solution.
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Figure 33: kd–βd curves for 2D array of glass-embedded silver nanospheres (electric dipole
moments parallel to the direction of propagation) with a = 5 nm and electric dipole scattering
coefficients obtained from Mie solution.

Figure 34: kd–βd curves for 3D array of glass-embedded silver nanospheres (electric dipole
moments parallel to the direction of propagation) with a = 5 nm and electric dipole scattering
coefficients obtained from Mie solution.
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Figure 35: Effective relative permittivity for 3D array of glass-embedded silver nanospheres
(dipole moments normal to the propagation direction) with a = 5 nm and dipole scattering
coefficients obtained from Mie solution.

Figure 36: kd–βd diagram for 2D array of εr = µr = 20 magnetodielectric spheres (electric
dipole moments parallel or perpendicular to the array plane) with a/d = .45 and dipole
scattering coefficients obtained from Mie solution.
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Figure 37: kd–βd diagram for 3D array of εr = µr = 20 magnetodielectric spheres (dipole mo-
ments normal to the propagation direction) with a/d = .45 and dipole scattering coefficients
obtained from Mie solution.

Figure 38: Effective relative permittivity and permeability for 3D array of εr = µr = 20
magnetodielectric spheres (dipole moments normal to the propagation direction) with dipole
scattering coefficients obtained from Mie solution.
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Figure 39: kd–βd diagram for 3D array of εr = 13.8, µr = 11.0 magnetodielectric spheres
(dipole moments normal to the propagation direction) with a/d = .45 and dipole scattering
coefficients obtained from Mie solution.

Figure 40: Effective relative permittivity and permeability for 3D array of εr = 13.8, µr =
11.0 magnetodielectric spheres (dipole moments normal to the propagation direction) with
dipole scattering coefficients obtained from Mie solution.
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Figure 41: kd–βd diagram for 1D array of εr = µr = 20 magnetodielectric spheres (dipole mo-
ments parallel to the propagation direction) with a/d = .45 and dipole scattering coefficients
obtained from Mie solution.

Figure 42: kd–βd diagram for 3D array of εr = µr = 20 magnetodielectric spheres (dipole mo-
ments parallel to the propagation direction) with a/d = .45 and dipole scattering coefficients
obtained from Mie solution.
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Figure 43: Reflection coefficient of a lossless partially finite 3D array of diamond spheres
(dipole moments normal to the propagation direction) with εr = 5.84, µr = 1, a/d = .45,
and dipole scattering coefficients obtained from Mie solution.

Figure 44: Reflection coefficient of a lossy partially finite 3D array of diamond spheres (dipole
moments normal to the propagation direction) with εr = 5.84, µr = 1, a/d = .45, and
dipole scattering coefficients obtained from Mie solution; and the Shore-Yaghjian reflection
coefficient.
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Figure 45: Reflection coefficient of a lossless partially finite 3D array of εr = 13.8, µr = 11
magnetodielectric spheres (dipole moments normal to the array axis) with a/d = .45 and
dipole scattering coefficients obtained from Mie solution.

Figure 46: Extended kd–βd diagram for an infinite 3D array of εr = 13.8, µr = 11 magne-
todielectric spheres, (dipoles normal to the array axis) with a/d = .45 and dipole scattering
coefficients obtained from Mie solution.
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Figure 47: Reflection coefficient of a partially finite 3D array of εr = 13.8, µr = 11 magne-
todielectric spheres, (dipoles normal to the array axis) with a/d = .45 and dipole scattering
coefficients obtained from Mie solution; and the Shore-Yaghjian reflection coefficient.
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A BIDIRECTIONALITY OF RECIPROCAL, LOSSY

OR LOSSLESS, UNIFORM OR PERIODIC WAVE-

GUIDES

The main purpose of this Appendix is to prove that a reciprocal (lossy or lossless) waveg-
uide (uniform or periodic) that supports a traveling wave with propagation constant β also
supports a corresponding traveling wave with propagation constant −β. In other words, all
reciprocal waveguides are bidirectional.

We see the need to prove this result because of some differing conclusions found in the
published literature. McIsaac [29] stated without proof that “reciprocity is not a sufficient
condition for bidirectionality in a lossy waveguide.” Harrington and Villeneuve [30], [31]
concluded without showing their proof that “for every β in the original media there exists
in the transposed media a propagation constant β̂ = −β.” They base their unproven con-
clusion on the idea that a time-harmonic traveling wave on any waveguide has a network
or transmission line equivalent circuit and that this transmission line equivalent circuit is
bidirectional if it is reciprocal. Although it is true that a traveling wave has a transmission
line equivalent circuit at each frequency, it remains to be proven that the same transmission
line equivalent circuit applies to a traveling wave propagating in the opposite direction. Pis-
soort and Olyslager [32] give a proof of the bidirectionality of reciprocal waveguides based
on the assumption that the propagation constants and the geometry of the waveguides can
be expressed as analytic functions of a parameter. Since it is uncertain that this premise of
parametric analyticity is always valid, we provide an alternative proof of bidirectionality for
reciprocal waveguides.

We begin by proving that for every traveling wave with a complex propagation constant β
on a lossless reciprocal uniform or periodic waveguide there exists a corresponding traveling
wave with complex propagation constant −β∗, where the superscript ∗ denotes the complex
conjugate. It should be noted that some lossless waveguides can support traveling waves
with complex propagation constants. These “complex waves” must, of course, carry zero
total power [33], [34], [35].

Maxwell’s homogeneous equations for the most general linear spatially nondispersive
material can be written as

∇× E = iω(µ · H + ν · E), ∇×H = −iω(ε · E + τ · H) (A.1)

where µ and ε are the permeability dyadic and permittivity dyadic, respectively, and ν and τ
are the magnetoelectric dyadics. Consider the possibility of a second solution (E∗,−H∗) sat-
isfying Maxwell’s equations (A.1). Then taking the complex conjugate of Maxwell equations
for this second solution gives

∇× E = iω(µ∗ · H − ν∗ · E), ∇× H = −iω(ε∗ · E − τ ∗ · H) . (A.2)

However, for a lossless reciprocal material [36, sec. 5.1]

µ∗ = µ, ε∗ = ε, ν∗ = −ν, τ ∗ = −τ (A.3)
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and thus (E∗,−H∗) is a solution if (E,H) is a solution. Consequently, for lossless uniform
waveguides with traveling waves satisfying

E(x, y, z) = e(x, y) eiβz, H(x, y, z) = h(x, y) eiβz (A.4)

we also have the solution

E∗(x, y, z) = e(x, y) e−iβ∗z, −H∗(x, y, z) = −h∗(x, y) e−iβ∗z (A.5)

so that lossless uniform traveling waves come in pairs with propagation constants (β,−β∗).
Likewise, for lossless periodic waveguides with traveling waves satisfying

E(x, y, z + d) = E(x, y, z) eiβd, H(x, y, z+ d) = H(x, y, z) eiβd (A.6)

where d is the spatial period, we also have the solution

E∗(x, y, z + d) = E∗(x, y, z) e−iβ∗d, −H∗(x, y, z + d) = −H∗(x, y, z) e−iβ∗d (A.7)

so that lossless periodic traveling waves also come in pairs with propagation constants
(β,−β∗).

The following proof of the bidirectionality of traveling waves on reciprocal lossy (or
lossless) waveguides is not as direct as the foregoing proof that applies to only lossless
waveguides. Begin by placing two linear, single-port, reciprocal antennas (labeled A1 and
A2) in the fields of a waveguide as shown in Fig. 48. (Although an open periodic waveguide
is shown in Fig. 48, the following proof applies to closed and uniform waveguides as well.)
The two antennas are separated by a large distance L (which, for periodic waveguides, is

z
d

A1
A2

L

Figure 48: Reciprocal waveguide with two linear, single-port, reciprocal antennas.

assumed to increase or decrease only in increments of the periodic spacing d). Let antenna A1
be designed and positioned to excite a single waveguide mode traveling in the +z direction

(eiβz) with complex propagation constant β.14 For the sake of simplifying the scattering

14For total power flow in the +z direction, the imaginary part of β is greater than or equal to zero, but
the real part of β can be greater than zero or less than zero depending on whether the mode is a forward
or backward traveling wave. For complex waves on lossless waveguides, the total power flow is zero, but the
exponential decay of the wave is always in the +z direction.
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matrix equations below, let each of the feed lines be identical, for example, 50-ohm coaxial
cables. Also, let antenna A2 be a dipole antenna that does not scatter when it is terminated
in a load with reflection coefficient Γ` (a nonscattering antenna (NSA)[36, pp. 140–141]).

Feed antenna A1 with ingoing feed modal coefficient a1 and terminate antenna A2 in its
NSA load so that a2 = Γ`b2, where a2 and b2 are the ingoing and outgoing feed modal coef-
ficients of antenna A2. Then we have from the general two-port scattering-matrix equations
[36, eq. (2–10)]

b2 = S21a1 + S22a2 = S21a1 + S22Γ`b2 (A.8)

so that

b2 =
S21a1

1 − Γ`S22
. (A.9)

Now S22 = b20/a20, where b20 and a20 are values of b2 and a2 when a1 = 0. Because of
scattering from antenna A1, S22 depends on the antenna separation distance L. Furthermore,
we can write b20 = b200 +∆b20, where b200 is the value of b20 when antenna A1 is removed. If
a small loss is inserted into free space so that the propagation constant of free space has an

imaginary part (k = kr + iα, α > 0), then ∆b20 = O
(
e−2αL

)
and (A.9) can be rewritten

as

b2 =
S21αa1

1 − Γ`S220

[
1 +O

(
e−2αL

)]
(A.10)

where S220 = b200/a20 is independent of the separation distance L and S21α is the value of
S21 with the small loss α inserted into the free-space propagation constant.

Next feed antenna A2 with ingoing feed modal coefficient a′2 and terminate A1 in a
matched load so that a′1 = 0. Then we have from the two-port scattering-matrix equations

b′1 = S12αa
′
2 (A.11)

where S12α is the value of S12 with the small loss α in the free-space propagation constant.
If all the material in the waveguide is reciprocal

S21α = S12α. (A.12)

Now translate without rotation the antenna A2 a distance d in the +z direction and
repeat the above measurement procedure to obtain the equations

bd2 =
Sd21αa1

1 − Γ`S220

[
1 +O

(
e−2α(L + d)

)]
(A.13)

bd′1 = Sd12αa
′
2 (A.14)

Sd21α = Sd12α. (A.15)

Since antenna A2 is an NSA for the measurements leading to (A.10) and (A.13), and antenna
A1 excites only a traveling wave on the waveguide

bd2 = b2 eiβd [1 +O(αd)]. (A.16)
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Inserting bd2 from (A.16) into (A.13) and comparing with (A.10) gives

S21α eiβd [1 +O(αd)]
[
1 +O

(
e−2αL

)]
= Sd21α

[
1 +O

(
e−2α(L + d)

)]
. (A.17)

Letting α → 0 and L→ ∞ such that αL→ ∞ reduces (A.17) to

lim
α→0

Sd21α

S21α
=
Sd21

S21
= eiβd (A.18)

or, since reciprocity demands that S21 = S12 and Sd21 = Sd12

Sd12 = S12 eiβd. (A.19)

Dividing (A.14) by (A.11), taking the limit as α→ 0, using the fact that limα→0[S
d
12α/S12α] =

[Sd12/S12], and substituting from (A.19) yields

bd′1 = b′1e
iβd (A.20)

which means that the antenna A1 is receiving a traveling wave with phase varying as e−iβz

when antenna A2 is transmitting. In other words, every traveling wave on a reciprocal, lossy
or lossless, uniform or periodic waveguide is bidirectional. That is, for every traveling wave
on such a waveguide with propagation constant β, there exists a corresponding traveling
wave with propagation constant −β; the propagation constants come in pairs (β,−β).

Since we also proved above that for lossless, reciprocal, uniform or periodic waveguides,
traveling waves also come in pairs having propagation constants (β,−β∗), we have the result
that complex waves on lossless, reciprocal, uniform or periodic waveguides come in quadru-
plets with propagation constants (β,−β, β∗,−β∗).

Finally, we note that although it is not true in general that nonreciprocal waveguides are
bidirectional, many nonreciprocal waveguides are nevertheless bidirectional [33].
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B RAPIDLY CONVERGENT EXPRESSIONS FOR

SCHLÖMILCH SERIES

In this Appendix we collect the rapidly convergent expressions for Schlömilch series used in
this report.

[18, eq. 8.524(1)]:

∞∑

n=1

cos(nβd)J0(nkd) = −1

2
, 0 < kd < βd ≤ π (B.1a)

[18, eq. 8.522(1)]:

∞∑

n=1

cos(nβd)J0(nkd) = −1

2
+

1

kd

√
1 −

(
βd

kd

)2
, 0 < βd < kd ≤ π (B.1b)

[18, eq. 8.524(3)]:

∞∑

n=1

cos(nβd)Y0(nkd) = − 1

π

(
γ + ln

kd

4π

)
− 1√

(βd)2 − (kd)2

−
∞∑

l=1

[
1√

(2lπ + βd)2 − (kd)2
− 1

2lπ

]
−

∞∑

l=1

[
1√

(2lπ − βd)2 − (kd)2
− 1

2lπ

]
(B.2a)

0 < kd < βd ≤ π

[18, eq. 8.522(3)]:
∞∑

n=1

cos(nβd)Y0(nkd) = − 1

π

(
γ + ln

kd

4π

)

−
∞∑

l=1

[
1√

(2lπ + βd)2 − (kd)2
− 1

2lπ

]
−

∞∑

l=1

[
1√

(2lπ − βd)2 − (kd)2
− 1

2lπ

]
(B.2b)

0 < βd < kd ≤ π

In (B.1) and (B.2) γ, referred to as C in [18], is the Euler constant [19, Table 1.1],

γ = 0.577215665 . . . (B.3)

and J0 and Y0 are the Bessel and Neumann functions of order 0, respectively. We have found
that truncating the expressions on the RHS of (B.2a) and (B.2b) at l = 10 yields sufficient
accuracy for our purposes.

[18, eq. 8.5.26]:

∞∑

n=1

cos(nβd) K0

(
n(d/h)

√
(2π)2 − (kh)2

)
=

1

2

(
γ + ln

1

4π

d

h

√
(2π)2 − (kh)2

)
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+
π/2

(d/h)
√

(2π)2 − (kh)2

√√√√1 +

(
βd

(d/h)
√

(2π)2 − (kh)2

)2

+
π

2

[ ∞∑

l=1

(
1√

(d/h)2[(2π)2 − (kh)2] + (2lπ − βd)2
− 1

2lπ

)

+

∞∑

l=1

(
1√

(d/h)2[(2π)2 − (kh)2] + (2lπ − βd)2
− 1

2lπ

)]
(B.4)

In (B4) K0 is the modified Bessel function of order 0.

[37]-[39]:
∞∑

n=1

sin(nβd)J1(nkd) = 0, 0 < kd ≤ βd ≤ π (B.5)

[37]-[39]:

∞∑

n=1

sin(nβd)Y1(nkd) = −
∞∑

m=−∞

sgn(m) e−qm
kd sinh qm

+ λ1, 0 < kd ≤ βd ≤ π (B.6)

where
sinh qm =

√
β2
m − 1 (B.7a)

βm =
βd+ 2mπ

kd
(B.7b)

λ1 =
1

π

(
2π

kd

)
B1

(
βd

2π

)
(B.7c)

and B1 is the Bernoulli polynomial [18, eq. 9.62]

B1(x) = x− 1

2
. (B.7d)

[37]-[39]:
∞∑

n=1

cos(nβd)J2(nkd) = 0, 0 < kd ≤ βd ≤ π (B.8a)

∞∑

n=1

cos(nβd)J2(nkd) = −
cos

[
2 cos−1

(
βd

kd

)]

kd

√
1 −

(
βd

kd

)2
, 0 < βd < kd ≤ π (B.8b)

[37]-[39]:
∞∑

n=1

cos(nβd)Y2(nkd) =
∞∑

m=−∞

e−2qm

kd sinh qm
+ λ2, 0 < kd ≤ βd ≤ π (B.9)
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where
sinh qm =

√
β2
m − 1 (B.10a)

βm =
βd+ 2mπ

kd
(B.10b)

λ2 =
1

2π

[
B0

(
βd

2π

)
− 2

(
2π

kd

)2

B2

(
βd

2π

)]
(B.10c)

and B0 and B2 are the Bernoulli polynomials [18, eq. 9.62]

B0(x) = 1, B2(x) = x2 − x+
1

6
. (B.10d)

[18, eqs. 8.521(1), 8.522(3)]:

∞∑

l=1

J0(lkh) = −1

2
+

1

kh
, 0 < kh < 2π (B.11)

∞∑

l=1

Y0(lkh) = − 1

π

(
γ + ln

kh

4π

)
− 2

∞∑

l=1

[
1√

(2πl)2 − (kh)2
− 1

2πl

]
, 0 < kh < 2π (B.12)

with γ the Euler constant given by (B.3). Truncating the series on the RHS of (B.12) at
l = 10 gives sufficient accuracy for our purposes.

[37]-[39]:
∞∑

l=1

J2(lkh) =
1

kh
, 0 < kh < 2π (B.13)

∞∑

l=1

Y2(lkh) ≈ 2
∞∑

m=1

e−2qm

kh sinh qm
+ λ2 (B.14)

where
sinh qm =

√
β2
m − 1 (B.15a)

βm =
2mπ

kh
(B.15b)

λ2 =
1

2π

[
B0(0) − 2

(
2π

kh

)2

B2(0)

]
=

1

2π

[
1 − 2

(
2π

kh

)2
1

6

]
(B.15c)

and B0 and B2 are the Bernoulli polynomials given by (B.10d).
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C BESSEL FUNCTION RELATIONS

In this Appendix we assemble a number of Bessel function relations that we make frequent
use of in the report.

1) Relations between modified Bessel functions and Hankel functions:

[19, eq. 9.6.4]

K0(z) =
π

2
iH

(1)
0 (iz) (C.1)

K1(z) = −π
2
H

(1)
1 (iz) (C.2)

K2(z) = −π
2
iH

(1)
2 (iz) (C.3)

2) Small argument forms:

[19, eq. 9.1.8]:

H
(1)
0 (z)

|z|<<1∼ i
2

π
ln z (C.4)

[19, eq. 9.6.9]:

K1(z) ∼
1

2

(z
2

)−1

(C.5)

[19, eq. 9.6.9]:

K2(z)
|z|<<1∼

(z
2

)−2

(C.6)

3) Integral representation of J0(z):

[19, eq. 9.1.21]:

J0(z) =
1

π

π∫

0

eiz cos θdθ (C.7)

4) Recursion relations:

[19, eqs. 9.1.27, 9.6.26]:

2
H

(1)
1 (z)

z
= H

(1)
0 (z) +H

(1)
2 (z) (C.8)

2
K1(z)

z
= K2(z) −K0(z) (C.9)
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5) Differential equation satisfied by J±ν(z), Yν(z),H
(1,2)
ν (z):

[19, eq. 9.1.1]:

z2 d2w

dz2
+ z

dw

dz
+ z2 w = 0 (C.10)
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D SUMMATION FORMULAS

In this Appendix we collect a number of summation formulas used frequently in the report.

[18, eqs. 1.441(1), (2)]:

2
∞∑

m=1

eikhm

m
= −2 ln

[
2 sin

(
kh

2

)]
+ i(π − kh), 0 < kh < 2π. (D.1)

The sums
∞∑

n=1

cos(nβd) einkd =
1

2

∞∑

n=1

[
ein(βd+ kd) + ein(kd− βd)

]
(D.2)

and
∞∑

n=1

sin(nβd) einkd =
1

2i

∞∑

n=1

[
ein(βd+ kd) − ein(kd− βd)

]
(D.3)

can be evaluated in closed form by formally using the formula for the sum of an infinite
geometric progression

∞∑

n=1

zn =
z

1 − z
, z = ei(kd± βd) (D.4)

even though |z| = 1 here (rigorously, k can be thought of as having a very small imaginary
part, consistent with the implicit harmonic time dependence eiωt, which is allowed to go to
zero at the end) yielding

∞∑

n=1

cos(nβd) einkd = −1

2
+ i

1

2

sin kd

cos βd− cos kd
, kd 6= βd. (D.5)

and
∞∑

n=1

sin(nβd) einkd = −1

2

sinβd

cosβd− cos kd
, kd 6= βd . (D.6)

[18, eqs. 1.443(3), 1.443(5)]:

∞∑

n=1

cosna

n2
=
π2

6
− πa

2
+
a2

4
, 0 < a < 2π (D.7a)

∞∑

n=1

sinna

n3
=
π2a

6
− πa2

4
+
a3

12
, 0 < a < 2π (D.7b)
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[4, Appendix C],[40]:

∞∑

n=1

sinna

n2
≡ Cl2(a) ≈ −0.1381 sin a+ 0.03212 sin 2a− 0.9653a ln(a/π), 0 < a < π (D.8a)

Cl2(a) = −Cl2(2π − a), π ≤ a < 2π (D.8b)

∞∑

n=1

cosna

n3
≡ Cl3(a) ≈ 1.3328 − 0.1424 cos a+ 0.01094 cos 2a

− 0.4902a2 ln(a/π)− 0.2417a2, 0 < a < π (D.8c)

Cl3(a) = Cl3(2π − a), π ≤ a < 2π . (D.8d)

From (D.8a)
Cl2(π) = Cl2(2π) = 0 (D.9)

and from (D.8c)

Cl3(2π) =

∞∑

n=1

1

n3
= ζ(3) = 1.20205 · · · (D.10)

where ζ is the Riemann zeta function tabulated for positive integer arguments in
[19, Table 23.3].15

[19, Table 23.3]:

∞∑

n=1

1

n2
= ζ(2) = 1.64493 · · · (D.12)

[18, eqs. 1.441, 1.443]:

∞∑

n=1

cos na

n
=

1

2
ln

1

2(1 − cos a)
= − ln

[
2 sin

(a
2

)]
, 0 < a < 2π (D.13a)

∞∑

n=1

sinna

n
=
π − a

2
, 0 < a < 2π (D.13b)

15The Clausen functions Cl2 and Cl3 are also given by the integral expressions [40]

Cl2(a) = −
a∫

0

ln |2 sin
t

2
| dt (D.11a)

and

Cl3(a) = ζ(3) −
a∫

0

Cl2(t) dt . (D.11b)
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∞∑

n=1

cosna

n2
=
π2

6
− πa

2
+
a2

4
, 0 < a < 2π (D.13c)

∞∑

n=1

sinna

n3
=
π2a

6
− πa2

4
+
a3

12
, 0 < a < 2π (D.13d)
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E LIST OF kd–βd EQUATIONS

In this Appendix we list for easy reference the rapidly convergent forms of the kd–βd equa-
tions for all the 2D and 3D arrays investigated in Sections 2 to 9.

1) 2D Acoustic Monopole Arrays:

kh cosψ −< sinψ = 0 (E.1)

< = −2π
∞∑

n=1

cos(nβd)Y0(nkd) + 8
∞∑

n=1

cos(nβd)
∞∑

m=1

K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−2 ln

[
2 sin

(
kh

2

)]
, kh < 2π (E.2)

The Neumann function sum is evaluated using (B.2), and the modified Bessel function sum
converges extremely rapidly because of the exponential decay of K0.

2) 3D Acoustic Monopole Arrays:

kh cosψ −< sinψ = 0 (E.3)

< = −2π

kh

sin kd

cos βd− cos kd
+4π

∞∑

n=1

cos(nβd)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− 2π
∞∑

l=1

Y0(lkh) + 8
∞∑

l=1

∞∑

m=1

K0

(
l
√

(2πm)2 − (kh)2
)
− 2 ln

[
2 sin

(
kh

2

)]
, kh < 2π (E.4)

The sum of exponentials converges very rapidly because of the negative exponential so that
it is necessary to include only a few terms in the sum, for example n from 1 to 2 and m, l from
-2 to 2 for sufficient accuracy. Alternately an approximation to the sum can be obtained
by first performing the summation over n from 1 to ∞ in closed form using (D.4) and then
including only terms in the summation over m and l from −1 to 1. This yields

∞∑

n=1

cos(nβd)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

≈ 4

(
1

r1

e−(d/h)r1 cosβd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1
+

1

r2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2

)

(E.5)
where r1 =

√
(2π)2 − (kh)2, and r2 =

√
8π2 − (kh)2. The Neumann function sum is evalu-

ated using (B.12), and the modified Bessel function sum converges extremely rapidly because
of the exponential decay of K0.
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3) 2D Electric Dipole Arrays, Dipoles Oriented Perpendicular to the Array Axis

3a) Electric Dipoles in the Array Plane:

2

3
(kh)3 cosψ −< sinψ = 0 (E.6)

< = −2π(kh)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8

∞∑

n=1

cos(nβd)

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+ 4(kh) Cl2(kh) + 4 Cl3(kh), kh < 2π (E.7)

The Neumann function sum is evaluated using (B.2), and the modified Bessel function sum
converges extremely rapidly because of the exponential decay of K0. The Clausen functions
Cl2 and Cl3 are defined and approximated by (D.8).

3b) Electric Dipoles Perpendicular to the Array Plane:

2

3
(kh)3 cosψ −< sinψ = 0 (E.8)

< = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
, kh < 2π (E.9)

The sum
∑

cos(nβd)Y0(nkd) can be evaluated using (B.2), the sum
∑

cos(nβd)Y2(nkd) can
be evaluated very efficiently by using (B.9) and (B.10), and the K0 and K2 series converge
extremely rapidly because of the exponential decay of K0 and K2.

4) 3D Electric Dipole Arrays, Dipoles Oriented Perpendicular to the Array Axis:

2

3
(kh)3 cosψ −< sinψ = 0 (E.10)

< = −2π kh
sin kd

cos βd− cos kd
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− 4π
∞∑

n=1

cos(nβd)
∞∑

l=−∞
(l,m) 6=

∞∑

m=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(l2 +m2) − (kh)2

√
(2π)2(l2 +m2) − (kh)2

− 2
∞∑

l=1

[
π(kh)2 Y0(lkh) + 4

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)]

+ 4 kh Cl2(kh) + 4 Cl3(kh), kh < 2π (E.11)

The sum of exponentials converges very rapidly because of the negative exponential so that
it is necessary to include only a few terms in the sum, for example n from 1 to 2 and m, l
from -2 to 2 for sufficient accuracy, the Neumann function sum is evaluated using (B.2), and
the modified Bessel function sum converges extremely rapidly because of the exponential
decay of K0. The Clausen functions Cl2 and Cl3 are defined and approximated by (D.8).

5) 2D Electric Dipole Arrays, Dipoles Oriented Parallel to the Array Axis:

2

3
(kh)3 cosψ −< sinψ = 0 (E.12)

< = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) +
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4
∞∑

n=1

cos(nβd)
∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

)]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
, kh < 2π (E.13)

The sum
∑

cos(nβd)Y0(nkd) can be evaluated using (B.2), the sum
∑

cos(nβd)Y2(nkd) can
be evaluated very efficiently by using (B.9)-(B.10), and the modified Bessel function K0 and
K2 series converge extremely rapidly because of the exponential decay of K0 and K2. The
Clausen functions Cl2 and Cl3 are defined and approximated by (D.8).

6) 3D Electric Dipole Arrays, Dipoles Oriented Parallel to the Array Axis:

2

3
(kh)3 cosψ −< sinψ = 0 (E.14)

< = 16π3
∞∑

n=1

cos(nβd)
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− π(kh)2

[
∞∑

l=1

Y0(lkh) −
∞∑

l=1

Y2(lkh)

]
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+ 4

∞∑

l=1

∞∑

m=1

[
[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)

− [(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
)]

− 2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ khCl2(kh) + Cl3(kh)

)
, kh < 2π (E.15)

The sum

∞∑

n=1

cos(nβd)

∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

(E.16)

converges very rapidly because of the negative exponential so that it is necessary to include
only a few terms in the sum, for example, n from 1 to 2 and m, l from −2 to 2, for sufficient
accuracy. Alternately an approximation to the sum can be obtained by first performing the
summation over n from 1 to ∞ in closed form using (D.4) and then including only terms in
the summation over m and l from −1 to 1. When this is done we obtain

∞∑

n=1

cos(nβd)
∞∑

m=−∞

∞∑

l=−∞

(m2 + l2) e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

≈ 4

(
1

r1

e−(d/h)r1 cosβd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1
+

2

r2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2

)

(E.17)
where r1 =

√
(2π)2 − (kh)2, and r2 =

√
8π2 − (kh)2. Accelerated convergence expressions

for the Schlömilch series
∑
Y0(lkh) and Y2(lkh) are given in (B.12) and (B.14), respectively.

The modified Bessel function series

∞∑

l=1

∞∑

m=1

[(2πm)2 + (kh)2] K0

(
l
√

(2πm)2 − (kh)2
)

(E.18a)

and
∞∑

l=1

∞∑

m=1

[(2πm)2 − (kh)2] K2

(
l
√

(2πm)2 − (kh)2
)

(E.18b)

converge extremely rapidly because of the exponential decay of K0 and K1 so that only a
few terms of the series need be included. The Clausen functions Cl2 and Cl3 are defined and
approximated by (D.8).

7) 2D Magnetodielectric Sphere Arrays

7a) Electric Dipoles in the Array Plane:

(kh)3 − S−Σ1

S−Σ2
=

S+Σ2

(kh)3 − S+Σ3
(E.19)
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S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole scat-
tering coefficients, respectively,

S− = −i
3

2
bsc1 (E.20a)

S+ = −i
3

2
asc1 (E.20b)

where bsc1 and asc1 are the electric and magnetic Mie dipole scattering coefficients defined in
[20],

Σ1 = −2π(kh)2
∞∑

n=1

cos(nβd)Y0(nkd)

− 8

∞∑

n=1

cos(nβd)

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+ 4 kh Cl2(kh) + 4 Cl3(kh) − i
2

3
(kh)3 kh < 2π (E.21)

Σ2 = 2π(kh)2

∞∑

n=1

sin(nβd)Y1(nkd)

− 8(kh)
∞∑

n=1

sin(nβd)
∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)
, kh < 2π

(E.22)
and

Σ3 = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4

∞∑

n=1

cos(nβd)

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

− 2(kh)2 ln

[
2 sin

(
kh

2

)]
− 2khCl2(kh) − 2Cl3(kh) − i

2

3
(kh)3, kh < 2π (E.23)

Rapidly convergent expressions for the slowly convergent Schlömilch series
∑

cos(nβd)Y0(nkd)
and

∑
cos(nβd)Y2(nkd) are given in (B.2a) and (B.9)-(B.10), respectively. All series involv-

ing the modified Bessel functions K0, K1, and K2, converge very rapidly because of the
exponential decay of these functions so that only a few terms of the series give sufficient
accuracy. The convergence of the series

∑
sin(nβd)Y1(nkd) can be greatly accelerated by

using (B.6)-(B.7). The Clausen functions Cl2 and Cl3 are defined and approximated by (D.8).

7b) Electric Dipoles Perpendicular to the Array Plane:

(kh)3 − S−Σ1

S−Σ2
=

S+Σ2

(kh)3 − S+Σ3
(E.24)
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S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole scat-
tering coefficients, respectively, given by (E.20).

Σ1 = −π(kh)2

[
∞∑

n=1

cos(nβd)Y0(nkd) −
∞∑

n=1

cos(nβd)Y2(nkd)

]

+ 4

∞∑

n=1

cos(nβd)

∞∑

m=1

[
[
(2πm)2 + (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

−
[
(2πm)2 − (kh)2

]
K2

(
n(d/h)

√
(2πm)2 − (kh)2

) ]

−2

(
(kh)2 ln

[
2 sin

(
kh

2

)]
+ kh Cl2(kh) + Cl3(kh)

)
− i

2

3
(kh)3, kh < 2π (E.25)

Σ2 = 2π(kh)2
∞∑

n=1

sin(nβd)Y1(nkd)

− 8 kh

∞∑

n=1

sin(nβd)

∞∑

m=1

√
(2πm)2 − (kh)2 K1

(
n(d/h)

√
(2πm)2 − (kh)2

)
, kh < 2π

(E.26)

Σ3 = −2π(kh)2

∞∑

n=1

cos(nβd)Y0(nkd)

− 8

∞∑

n=1

cos(nβd)

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
n(d/h)

√
(2πm)2 − (kh)2

)

+ 4 kh Cl2(kh) + 4 Cl3(kh) − i
2

3
(kh)3, kh < 2π (E.27)

The series
∑

cos(nβd)Y0(nkd) is treated in (B.2) and the series
∑

cos(nβd)Y2(nkd) is eval-
uated by (B.9)-(B.10). All series involving the modified Bessel functions K0, K1, or K2

converge very rapidly because of the exponential decay of these functions so that only a few
terms of the series give sufficient accuracy. The convergence of the series

∑
sin(nβd)Y1(nkd)

can be greatly accelerated by using (B.6)-(B.7). The Clausen functions Cl2 and Cl3 are
defined and approximated by (D.8).

8) 3D Magnetodielectric Sphere Arrays:

(kh)3 − S−Σ1

S−Σ2

=
S+Σ2

(kh)3 − S+Σ1

(E.28)

S− and S+ are the normalized magnetodielectric sphere electric and magnetic dipole scat-
tering coefficients, respectively, given by (E.20).

Σ1 = −2πkh
sin kd

cos βd− cos kd
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− 4π
∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

− 2π(kh)2

∞∑

l=1

Y0(lkh) − 8

∞∑

l=1

∞∑

m=1

[
(2πm)2 − (kh)2

]
K0

(
l
√

(2πm)2 − (kh)2
)

+ 4 kh Cl2(kh) + 4 Cl3(kh) − i
2

3
(kh)3, kh < 2π (E.29)

and

Σ2 = 2π kh
sinβd

cosβd− cos kd

− 4π kh

∞∑

n=1

sin(nβd)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2
, kh < 2π (E.30)

A rapidly convergent expression for the slowly convergent Schlömilch series
∑
Y0(lkh) is

given by (B.12), and all series involving negative exponentials and the modified Bessel func-
tion K0 (which decays exponentially) converge very rapidly so that only a few terms of these
series gives sufficient accuracy. Alternately, approximate closed form expressions for the
summations involving negative exponentials can be obtained by first performing the sum-
mation over n from 1 to ∞ using (D.4) and then including only terms in the summations
over m and l for which |m| ≤ 1 and |l| ≤ 1 thus yielding

∞∑

n=1

cos(nβd)
∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

[
(2πm)2 − (kh)2

] e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

√
(2π)2(m2 + l2) − (kh)2

≈ 2
(2π)2 − 2(kh)2

√
(2π)2 − (kh)2

e−(d/h)r1 cosβd− e−2(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1

+ 4
(2π)2 − (kh)2

√
8π2 − (kh)2

e−(d/h)r2 cos βd− e−2(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2
(E.31)

where r1 =
√

(2π)2 − (kh)2, and r2 =
√

8π2 − (kh)2. The corresponding approximate closed
form expression for the sum of negative exponentials in Σ2 is

∞∑

n=1

sin(nβd)

∞∑

m=−∞
(m,l) 6=

∞∑

l=−∞
(0,0)

e−n(d/h)
√

(2π)2(m2 + l2) − (kh)2

≈ 4 sin βd

(
e−(d/h)r1

1 − 2 cos βd e−(d/h)r1 + e−2(d/h)r1
+

e−(d/h)r2

1 − 2 cos βd e−(d/h)r2 + e−2(d/h)r2

)

(E.32)
where r1 =

√
(2π)2 − (kh)2, and r2 =

√
8π2 − (kh)2. The Clausen functions Cl2 and Cl3

are defined and approximated by (D.8).
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